The Binormal Flow: a toy model for
turbulence
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ABSTRACT

Noncircular jets have been the topic of extensive research in the last fifteen years.
These jets were identified as an efficient technique of passive flow control that
allows significant improvements of performance in various practical systems at
a relatively low cost because noncircular jets rely solely on changes in the ge-
ometry of the nozzle. The applications of noncircular jets discussed in this re-
view include improved large- and small-scale mixing in low- and high-speed
flows, and enhanced combustor performance, by improving combustion effi-
ciency, reducing combustion instabilities and undesired emissions. Additional
applications include noise suppression, heat transfer, and thrust vector control
(TVC).

The flow patterns associated with noncircular jets involve mechanisms of vor-
tex evolution and interaction, flow instabilities, and fine-scale turbulence aug-
mentation. Stability theory identified the effects of initial momentum thickness
distribution, aspect ratio, and radius of curvature on the initial flow evolution.
Experiments revealed complex vortex evolution and interaction related to self-
induction and interaction between azimuthal and axial vortices, which lead to
axis switching in the mean flow field. Numerical simulations described the de-
tails and clarified mechanisms of vorticity dynamics and effects of heat release
and reaction on noncircular jet behavior.
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Figure 6 Variation of momentum thickness with axial distance at the vertex and flat sides of the
triangular jet: (a) orifice jet, (b) pipe jet. Corresponding evolution of the jet cross-sections along
the axis: (c) orifice jet, (d) pipe jet. (Koshigoe et al 1989)
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FIG. 10. Axis switching of the jet cross section in terms of isocontours of
time-averaged streamwise velocity scaled with its local centerline value
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I, ITI, V : hairpin (braid) vortices
II, IV : deformed vortex rings
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Evolution of an M-polygon with zero torsion for M = 15 2(t) = ~||(X3(0.), X2(0.2))|| + iX3(0.t).¢ € [0,27/M?)
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Riemann’s function

0

ort) =3 Sinj(.ij D (e 1860)

j=1
e Hardy 1915 (H-Littlewood circle method)
e Gerver 1960 (Riemann was wrong)

At t, . =7p/q p,q odd, the derivative exists and is —1/2

o0 eitj2
¢p(t) = Z —5 Duistermaat 1991

Fractal behavior of the graph.
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e ‘R satisfies the multifractal formalism of Frisch-Parisi (Jaffard 96) is
intermittent (Boritchev-Eceizabarrena-Da Rocha 19), its graph has
no tangents (at the end Riemann was right!!) and has Haussdorf di-
mension < 5 (Eceizabarrena 19)

e The theorem gives a non-obvious non-linear geometric interpreta-
tion for Riemman’s function.



This first glimpse of topological
fluid flows in experiment raises
many questions:

Are all knots unstable?

Is Helicity conserved
through reconnections?

Reconnections are also
seen in superfluids and

plasmas; are the
topological dynamics
universal?
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Construction of the Selfsimilar
Solutions of the Binormal Flow

1.1 The Binormal Flow

We are interested in the evolution of a vortex filament in 3d. Therefore we consider a fluid that
is moving according to Euler Equations such that its velocity field u(z,t) , € R3 , t € R is
irrotational except in a curve. This curve is parametrized by arc length as

(s,t) — x(s,t) eR® , seR.

The velocity field is then obtained using the Biot—Savart integral,

wpy= L [T X0 =P o s
(P) 4”/—x|\(s.t)—P|3AT(“[)1' (1.1)

with P a point outside of the curve,
T(s,t) = xs(s, 1),
and I' denoting the strength of the filament.
Typical examples of vortex filaments are:
1. The straight line vortex: x(s,t) = x(s) = (0,0, s), and from (1.1)

I (—y,z,0)

U= ——--
27 x2 4 y2

2. The vortex ring x(s,0) = (cos s,sin s,0), [Sal.

3. The helical vortex, [LF], [Har|, [AIKO].



In order to find the evolution of the filament for later times one has to compute the velocity field
for points P in the curve. As we see from (1.1) this can not be easily done due to the singularity
of the Biot—Savart integral. Different methods of desingularizing this integral can be found in the
literature. In these lectures we shall follow the so called Localized Induction Approximation that
it was first proposed by Da Rios in 1906 [DaR] (see also [Ri]).

The consequence of this approximation is that the filament moves in the direction of the binormal
with a velocity that is proportional to the curvature. That is to say

Xt = XS/\XSS
{X(S,O) = Xxo(s). (1.2)

Using the Frenet equations and calling (7, n,b) the Frenet frame, we have for (¢, 7), the curvature
and the torsion of y, that

T, = cn
nyg = —cT +7b (1.3)
bl = —TNn

Hence (1.2) can be written as

Xt = cb
{ x(s,0) Xo(s). (1.4)



A first consequence of (1.2) is that |T'(s,t)| = 1. In fact, after differentiation in (1.2) we get for the
tangent vector the evolution equation

{ Ti T N\ Tss
T(s,0) = Tp(s).

(1.5)

Notice that T A Tss = J D, T, with J the complex structure in the unit sphere S? and D, the
covariant derivative. As a consequence, (1.5) is also known as the Schrodinger map equation with
target S2. This equation can be easily generalized by changing both the domain of definition and
the target. In these lectures we will be interested just in the second possibility, changing S? into
the Hyperbolic plane H?: In this case (1.2) becomes

Xt = Xs N= Xss; (1.6)
and calling again xs = 7', (1.5) has to be changed into

1 = L Dl (1.7)
with

aN_b=aA b , (a,b) €R® xR (1.8)

o O =
o = O
O



Next we give a fundamental transformation that links the binormal flow (1.2), and its modification
(1.6) with the 1d focusing (defocusing in the case of H?) cubic non-linear Schrédinger equation.

In [Has| the “filament” function
(s, t) = c(s, t)e o T D (1.9)
is introduced and proved that if (¢,7) are the curvature and torsion of the filament x(s,t) that

evolves according to (1.4), then v is a solution of

.

Yy = z’(wss+%(lwlz+z4(t))w), -
1.10

L ¢(5a0) ¢0(3)°

Here A(t) is real function that it is determined from x(0,¢).



Notice that the case of a constant solution gives the circle. The example of the helix is easily
obtained observing that (1.10) is invariant under the galilean transformations: If N € R and v is
a solution then

YN (s, t) = e_itN2+iNS¢(s — 2Nt t) (1.11)

is also a solution. Finally notice that (1.10) has solitons solutions that can be easily obtained with
the ansatz 1(s,t) = e Q(s) with w a real number and Q a real function. This fact together with
galilean transformations allow for the existence of solutions such that [¢|? behaves as a travelling
wave solution. Therefore it is natural to ask about the possibility of existence of this type of
solutions in real fluids. This was experimentally proved in [HB], see also [MHR]| and more recently

[AIKO).

It is interesting to observe that in the case of (1.6) a generalized curvature and torsion can be
defined, and as a consequence, a similar equation as (1.10) is obtained with a defocusing non—linear
potential (i.e. the negative sign in front of the cubic term instead of the positive one).



As we see Hasimoto transformation involves the Frenet frame. The calculation to obtain (1.10) is
slightly more complicated in this way. It is more simple if a parallel frame is used. The argument
goes as follows [Ko]. Consider the orthonormal frame (7, ey, e2) and the equations

T, = aey + Beg
€1s = —al
€gs = —,BT

Then, from (1.5),
T;=TA (ael 5 5 ﬁGQ)S 8T 5561-

As a consequence, we have on one hand that

Tst = azer + Brea + aeyy + Beoy, (1.12)

and on the other
ﬂs - 03362 - ﬂssel - as,BT + ﬁsaT. (1.13)
Hence we need to compute (eq4, ea) = — (e, €1). Following Hasimoto we compute its s—derivative
(e1t,€2)s = (eus,e2) + (e, €as) (1.14)

—(aT, e2) — (aTy,e2) — Blext, T)
= _a<7}’82> +B<ela Tt)

= —aa, ~ = —5(@* + B,



The last step is to define the complex function
Y(s,t) = a(s,t) +iB(s,t).

Then from (1.12)— (1.13)

o+ Bleat,e1) = —Pss
/Bt + Oé<61t, 62> = Ogs,
and from (1.14)
ot 2B (07 45+ AW)] = B
Bt — %Ol [(042 + 52) + A(t) = Qs

with A(t) a real function. Finally we get

b= (@+i8) = i{ (@ +i8) + o+ iB)(a? + 5+ 4) |

as desired. A similar calculation can be done in the case of (1.7), see for example [DeH].



1.2 Selfsimilar Solutions

In this section we will find the selfsimilar solutions of the binormal flow (1.2). Notice that the flow

1
is invariant under the scaling’ X X(As, )\Qt). Hence we look for solutions that satisfy

=

)\X()‘Sa)‘2t) — X(S,t) VA>0.

As a consequence such a x can be written as
x(s,t) = VG (9/\/2) A>3 1) (1.15)
for some G(s). Plugging (1.15) in (1.2) we obtain that G' has to be a solution of
1 S !/ / "
-G—-=-G'=G ANG". (1.16)
2 2
Calling T'(s) = G'(s) we obtain after differentiation:

—gT’ —TAT".

'There are other possible scalings but this is the only one that preserves the arclength.



From Frenet equations we get

—gcn =l (c’n — 2Ty c%b) ;

As a consequence ([Bu], [LD])

DN W

for some a > 0.



v
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Therefore if (T,,ngq,b,) is the unique solution of Frenet equations (1.3) with (¢, 7) = (a,s/2) and
(T%(0),m4(0),b,(0)) = 13x3 then G, is determined by

G, = T,
{Ga(()) = 2a(0,0,1). (1.17)

This second identity in (1.17) follows from (1.16) and the fact that G'(0) A G”(0) = ab,(0) =
a(0,0,1).

It is easy to prove that G,(s) approaches a straight line as s tends to +00 and similarly for s going
to —oo. In fact, from (1.16) we have

(@)’ _ sG,—Gq _ —2ab,

S 52 52

G N
Notice that |b,(s)| = 1. Therefore (—) is integrable in +00 and we can define
s

AT = lim G(s)

@ s—+oo 8§

’lAzH:l'




Hence

o0 /
Ga(s) = sA;‘[—i—Qas/ ba(s)ds' s>0

8’2

S ba(S’)

3 ds' s <0.

Ga(s) = sA;—Qas/

— 00

From these two identities and (1.17) it easily follows that (see [GRV])
|Xa(s,t) — sAT T o0) () — sA;]I(_OO,O](s)| <2aVvt t>0, (1.18)

with

Xa(s,t) = VtG, (s/x/i) ; (1.19)

and [ denoting the characteristic function. Hence we have found a solution of (1.14) for ¢ > 0 with

Ats s>0
a 70 — “ 1.20
Xa(5,0) {A“_Ls s < 0. ( )



Notice that the binormal flow (1.2) is reversible in time: if x(s,t) is a solution so is x(—s, —t).
Hence if we give as initial condition at time ¢ = 1

X(s,1) = Gu(s)

and go backwards in time we obtain from (1.19)— (1.20) that if AT # A_ a singularity in the shape
of a corner is developed at time ¢ = 0. Observe that G,(s) is real analytic because it is a solution

S
of Frenet equations with (¢, 7) = (a, 5)

In order to prove that AT # —A~, except in the trivial case a = 0 and Af = A5 = (1,0,0), we
a 0

a
need the following geometric lemma.



Lemma 1. [BV2] Assume (T},n;,b;), 7 = 1,2,3 are the components of the Frenet frame of a
reqular curve G(s) with s € R the arc length parameter and (T'(0),n(0),b(0)) = 13x3. Then

_ 16;/°
o(s) (nj(s) — ibj(s)) = —20,0;,

for 3 =1,2,3 with 0; the solution of

I ¢ . " :



with

and

In our case 9]- has to be a solution of

a2

n o, S

0; = 0. (1.21)

This equation can be easily integrated computing the Fourier transform of 6;. After some lengthy
calculations it can be proved see [GRV] that

Af{ = (A+ Aszrz»Ai‘s) = (A+ _Ajzv —A::s)

al al’

and Aq; = e ™/2, Recall that |AZ| = 1. Hence A} # A7 if a > 0.



In fact, two linearly independent solutions of (1.21) can be taken as follows,

> (s d i —iﬁ |
Bifle)) = / e+ L | i eleln (o)) de,

—0 g |
(1.22)
* itserer) 4 [ i igle |
Ba(s) = e 7 [(—oo,0(§) | dE-
Notice that the dispersive relation of 5; and (s is
) @
$(€) =& — S 1glel, (1.23)

which indicates that the non-linearity only makes a logarithmic correction to the free evolution.

From (1.22) and Lemma (1) the asymptotic behaviour of G, and T; can be obtained. The argu-
ments, although lengthy, are rather elemental and can be found in [GRV], where it is proved the
following theorem.



Theorem 1. /GRV] Given a > 0 then
Xag— \/ZGa (S/\/Z) )

with G, defined by (1.17) is a real analytic solution of (1.2) fort > 0.
Moreover there exist A, A, B, B, such that

a

(i) |Xa(8, t) — Af slp +00)(5) — A;s]l(_oo’o](s)‘ < a/t

(ii) Let |s| > max(2a,4), then the following asymptotics hold:

2 " 1
Ga(s) = AT <s+2a—)—4an—2+0(—3>, s = too,
s s s
=+ ba 2
To(s) = AF—2a—+0(1/5%), s— oo,
s

(ng — iba)(s) = BEels'/4tia’lglsl L O(1/s), s — too.



(i) AT = (Ai A A;tg)) are unitary vectors and

al>

2

A =Ag=e 27 o A=Ay Al =-43 ; (47,B)=0;

6 3 A
(iv) sin 5 = Alia —e 2" andsing = ﬁ with 0 the angle between A and —A,, and ¢ the
—

angle between the plane that contains A and A, and the vector b,(0) = (0,0, 1).
Recall that x(0,t) = 2av/t(0,0,1).

(v) There exist ay and a; with 0 < ag < a3 < 400 such that if a < ag then x, has no self-
intersections and if a1 < a, xq has finitely many self—intersections.



Another approach: a complete integrable system






1 100 . 1 +oo .
— X (s)e %5d X =———/ X (&)eSede, (41
N f_ N (s)e s = X(s) VoA (&)e'*>d&, (41)

then, X (§) satisfies

X&) =

EX"(5) +3X'(5) + 467X (6) — 4cjE X (5) = 0. (42)
This is a singular regular equation with indicial equation

r(r—1)43r =0, f=0 -1 (43

/
’i,NJ w0



Let us define now Z(£2) := £2X(§) < Z(n) := nX( /1), where = 52 > 0:
note that Z(S) exists always at & = 0, because £28'(€) = 0, and §2d52 In|é| =

so Z (&) is bounded around the origin. Moreover, from (42), we get

2

A C
Z’"M+(1—-—=1Zn) =0, 0. 45
? (1) ( n) (1) n > (45)




This 1s a particular case of the so-called Coulomb wave equation (take / = 0 in Olver
et al. 2010, 33 2(1)). Observe that if X 1s an analytic solution of (42), 1. e.,r = =0
n (43) then X (0) 1s finite and Y (n) := nX (\/m) 1s analytic in n > 0, with Y 0) = 0.

Also, Y (n) solves (45), and
> &2
X(0) = lim YSZ )

E—

— Y'(0). (46)

Note that ¥ corresponds to the so-called regular Coulomb wave functions [take [ = 0
in Olver et al. 2010, 33.2(11)]. Moreover, we have the following result.



~

Lemma 3.3 (i) If Y solves (45) with Y (0) = O, then it is analytic in n > 0, and
Y ()| and |Y'(n)| are bounded in 1 € [0, 00).

(ii) If 7 solves (45) with Z(O) #+ 0, then |2(n)| is bounded in n € [0, 00) while
|Z’(77)| is bounded in n € [e€, o0) for all € > 0. Moreover, for 0 < n small, we
have

Z'(n) = ¢§In(n) + O(1).



Finally, when n — 07, we have trivially

. A . Y2(n)
_ N2 2
lim E(n) = (7)*(0) - cf lim —
= (¥Y)*(0) — ¢§ lim w = (Y)*(0).
n—>0+

Therefore, for some other positive constant C, |E (’7)J < C, forall n € [0, o0), from
which we conclude the boundedness of |Y (n)| and |Y'(n)|, and

+o0o .2
0
2

E(00)=Eo+f ; Y2 (n) dn,

0

which gives (1).

arrvan ma v~ \age

With respect to (ii), it follows from the Frobenius—Fuchs theorem, because the
indicial equation for (45) is r(r — 1) = 0. Therefore, the solutions are r = 0 and
r = 1, which differ in an integer. In fact, the case r = 0 leads to the so-called irregular
Coulomb wave functions [Olver et al. 2010, 33.2(iii)]. Also, note that, from the above
arguments, we know that Z is bounded around the origin. Hence, from

1
Z'(n) =27'(1) - f 7" (1) dr,

n

the result can be easily obtained. O



It is straightforward to express n(¢) and lA)(fg' ) in terms of f((n), n > 0:

T'(s) = con(s) = coh(§) = it T () = —£°X(E) = -Y(EH) = -Y(),

. 2’\ . A 2
C()b/(S) — —%X”(S) — COiSB(S) _ l_d(s X(S)) _ l_d(Y(S )

ez e2
> e > de =1§Y'(§7)

— cob(§) = Y () =Y (),

where we have differentiated (39) in the last expression. Then,

co(—n+ib) &) = (Y +iY)EDH = (Y +iY)(n). (63)




()
e
ve|d

H\”)QN‘LOLLC Caul A\:

2
W"—|—W(1+%O) =0 ngW" +9W + W =0,

with

W1(0) =0, WI(0) = lim i) _ iAic2.
n—0 n

On the other hand, the Laplace transform of Wl(n),

£(t) = L{Wi(n)} = /0 " Wa(n)edn, >0,

satisfies

2L () + 2tL(t) + L' (t) — AL(t) = 0.

(55)

(56)

(57)

(58)



Furthermore,

/ Wi (n)dn = 2 / X, (6)de = / €3X,(&)de = iX)"(0) = ic,

0

where we have used the fact that X, is odd. Rewriting as

t0 = [ W an = [ Wine g =252+ 5 [T W@ an
we have
t°L(t) / Wi ™,
which, as t — oo, becomes
Jim t2L(t) = W'(0).
Hence, from —, we have an initial value problem whose solution L£(t) satisfies

hm t L:( ) _ hm t2 L:(O) co arctan(t) __ 2Coeco7r/2
1+ ¢2

Combining this with 1’ and , we conclude that

ic2Ay = W’(O) = ic} 26007/2 =5 A; = eo™/2.

(59)

(60)

(61)

The above approach works the same for the Euclidean case as well; hence, the corresponding ex-

pression for A; can be obtained.



An introduction to 1d cubic NLS
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Stability of one corner
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Theorem.— (with V. Banica) The self-similar solutions are stable.
In particular, the creation/annilihation of a corner is stable.
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In this lecture we shall present some results concerning the stability of the self—similar solutions
that we described in the previous lecture. As we saw the equation (1.2) is transformed thanks
to the Hasimoto transformation (1.9) into the 1-d cubic NLS equation (1.10). In this setting the
particular solutio y, of (1.2) becomes

Va(s,t) = —=e/1 0<t a>0, (1.24)

Vit

solution of i

o = (Bt g (WP +AB)Y). AW =-%, .
1.25

| ¥(s5,0) = aé.

As we see we are considering very rough initial conditions. In fact, the standard arguments to treat
NLS equations, Strichartz estimates and Bourgain spaces can not be used in a straightforward way
to treat rough data as the d—function. We refer the reader to the survey paper [BV2] for a detailed
study of this question.



An important observation is that neither the initial data in (1.25) nor 1,(s, t) given in (1.24) belong
to L?(R), and in fact to any Sobolev space H*(|R), s > 0. Therefore although the 1d cubic NLS is
a complete integrable system none of the infinitely many conservation laws is useful in this case.

However, there is a natural energy asociated to the family of solutions 1),. This energy is easily
expressed when we write 1), in selfsimilar variables. That is to say, when we perform to the equation
(1.25) the so called pseudoconformal transformation. For simplicity of the exposition we will make
a simple change of scale that allows us to write (1.25) as

2
it + Ugs (W - %) u = 0. (1.26)

Notice that in (1.26) we also considered the defocusing case. This is because in what follows the
arguments we use work equally well in both cases.



Then, we define v through the transformation

is? /4t
u(s,t) = = (f 1) , (1.27)

|

so that v becomes a solution of
. 1 8l ..
U + Vg : (Jv|* —a*)v=0, 0<t, (1.28)

and 1), is transformed into
Vg =a 0<t, (1.29)

that is a particular solution of (1.28). Hence we are interested in the stability of v,. Notice that
(1.27) transforms t = 0 into ¢ = +o00. Therefore to construct a solution u of (1.26) in the time
interval [0, 1] is equivalent to find a solution of v in [1,00]. Moreover the limit of u(t) at t — 0
becomes the limit of v(t) for t — o0o. As a consequence the IVP (1.26) is related to the long time
behaviour of v(t), and in particular it will be relevant to know wether or not perturbations of the
particular solutions v, = a scatter. As we know the scattering properties are mainly of two types.
Firstly the construction of the Wave Operator and secondly the Asymptotic Completeness of the
scattering operator. In this lecture we shall deal with the first question and in the next one with
the second one.



The first important remark about (1.28) is that there is a natural energy:

/|vs |2d3$—/ (Jo(t) ds (1.30)

E'(t) = iﬁ (Jv]2 = a?) ds. (1.31)

that satisfies

In the defocusing situation (negative sign in the non-linear potential in (1.28)) this is sufficient to
construct a global solution of (1.28) such that FE(t) < +oo and ||v(t) — a||z2 is finite. Then (1.30),
(1.31) give an orbital stability result of the particular solution v, = a. The details can be found in
[BV1]. As we saw in Lecture 1 the defocusing case is related to the Schrédinger map onto HZ.



Let us write
v=w+a, (1.32)

so that if we want v to be a solution of (1.28), w has to solve

1
iwr + wes & - (lw + a|* — a®) (w+a) = 0. (1.33)
The linear part of the potential is
2
a
:t7 (w+w). (1.34)
2
The term Tw is easily cancelled using an integrating factor. This suggests to define the new
unknown .
z(s,t) = eTi@ 18ty (1.35)
that has to be a solution of
)
: /|
12t + 255 F a?eﬂwQ lgtz 4 ZF(Z’E)’ (1.36)

where F(z,Z) is the non-linear potential, and it involves quadratic and cubic terms in z and Z.



Hence given an asymptotic state u4 we look for a solution of (1.36) for ¢t > 1 such that

Hz(t)—eiwgm” —0 as t— +4oo.
2

This can be done by finding a fixed point for the operator

.y € oo . P 2 .
Az = %y, + z/ HT)0 (CIJ—(EZZCL2 l872(1) + F(z, E)) dr. (1.37)
1 T

The delicate part is the one in the Duhamel’s integral given by the linear term z(7). We sum and

substract e7% . and therefore if we work in a space of functions z(s,t) such that

Hz(t) - eit83u+] — O(t™) (1.38)

L2

for some a > 0, we can expect to obtain a solution Az = z by the classical Picard iteration. Then
the key point is to give a good L?-estimate of the oscillatory integral

o i (4— )82 —iT02— d'T
/ 61( T 2e e U4 m. (139)
t
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where the above calculations make sense as long as is integrable.



Theorem 2. Let t > 1 and m € N*. There exists a constant ag > 0 such that for all a < ag and
for all uy small in H=2 N H™ N W™ with respect to ag, equation (2.5) has a unique solution

v —v; € C([¢,00), H™(R)),
satisfying as t goes to infinity

0% (v —v1)(t)

lo@® - @l < 77 |

C
£
L2 =t

Here vy is
= 5 +ia%lgt itd>
v =a-+e €8 Uy

H~2 denotes the set of functions uy such

o d
[wm49ﬁgﬁ<+m,

H™ is the usual L* Sobolev space, and W™ is the Sobolev space of integrable functions with m
derivatives that are also integrable.



Notice that if given a we take uy and its derivatives small enough we can be sure that |[v| >

Therefore after undoing the conformal transformation (2.4) we obtain a solution (2.3) and ¢ =

U (%, %) solution of

sifimn 1 , a’
We want to construct a family of curves x(s,t) solution of the binormal flow (1.2) that it is close

to xq. From the properties of v we can find regular functions c(s,t) > L, and ¢(s,t) such that

2Vt
U(s,t) = (s, t)ei®®h),
Here ¢(s,t) is the curvature while the torsion is
7(s,t) = (s, t).
Hence we have to consider as filament funtion
D(s,t) = c(s, t)et Jo T(s:t)ds (2.18)

that it is a solution of (1.10) with
M0=%+@me (2.19)



Hereafter we will just consider the focusing problem. The positivity of the curvature allows us to
consider the Frenet frame and equations. At this respect it is useful to obtain the intrinsic equations
for the (¢, 7). They are as follows ([DaR],[Be])

et = —(cr)s—csT’

CSS - CT2
iy = —— ] + csC.
¢ S

The choice of A(t) is in this case, (see [Has])

A(t) = (iQﬂ + c2> (0,1). (2.20)

c



In order to construct x we first construct the Frenet frame (7,n,b). This is done in two steps.
From (1.5) we can obtain as we did in (1.12)- (1.14) when we considered the parallel frame the
equations for (73, ng, by):

T, = —ctn + ¢,
2
Cgs — CT
ng = el + =—b,
c
2
Cgs — CT
by = —c, T — —=———n.
c
Observe that at ¢ = 0 the term
Cu— OT2

can be obtained from (2.19), (2.20) so that (7,n,b)(0,t) can be constructed starting from and
initial condition (7°,n,b)(0,1).

Then we use Frenet equations to obtain (7,n,b)(s,t). Recall that

T, =T AT,.

Finally for a given x(0,1) we define

1 s
x(s,t) = x(0,1) — / cb(0,t") dt’ + / T(s,t)ds,
Ji 0

that solves x¢ = xs A Xss-



The proof that x also develops a corner at time ¢ = 0 is rather technical. The result is the following
one.

Theorem 3. Let ¢ > 0, t =1, 0 < a < ag with ag as in Theorem 2. Let uy be small in
H2nH3N W3 and s*uy small in H' with respect to € and a, and let v be the corresponding
solution obtained in Theorem 2. By using the Hasimoto transform, we construct from v a family
of curves x(s,t) that solves the binormal flow for 1 >t > 0, and such that there exists a unique xo
satisfying
Ix(5,2) = x0(5)| < oVt
uniformly in s € (—o0, 00).
Moreover
[x0(5) = x0(0) = sA3T0,00)(8) = A7 T(—o0 01 ()| < €ls]

where A are two unitary vectors such that the angle 0 between A} and —A; is determined by the

relation P
5 _ 2
sin — = e~™°/2,

2



In the previous result we prove the existence of solutions for ¢ > 1 of the equation
1
T T % (|v|2 — a2) v=20 (3.1)

that at infinity behave as

a— e:l:ia2 lgteit8§u+
where u4 is any given asymptotic state small in an appropriate space. Our purpose now is to find
a solution for ¢ > 1 and for any initial condition at time ¢ = 1 that belongs to an appropriate
function space and that is sufficiently small. We also want to prove the asymptotics of this solution
by finding the corresponding asymptotic state u,. Also we would like to remove the smallness
assumption in a

For doing that we have to look at the linearized equation that we obtained in the previous lecture,
see (2.13):
2

12t + 2ss = 0 (3.2)

f1+2ia® °

with initial condition at to > 1, 2(s, tp).



We need some lemmas on the growth of the Fourier transform of the solution.

Lemma 2. If z solves (1.49) then

a?

(6, < z [B(6,tol + 26, to)
0

In particular
2

t a
1Ol e < (%) o)l oo,
for all k € Z.

Proof. Using the Fourier transform we have

2
—~ a A ~~
0, 2(6,6)* = F2Im L 2(E DA (-, D),

and therefore )

03(E1)] < - [B(=€, 1)

and a similar differential inequality for 0; |2(—&,t)|. The lemma then easily follows.

(1.49)



Lemma 3. Let 0 < 6. If z solves (1.49) then for all € #0 and 0 < to < t

c(a, d)
(€2to)°

2(§,1)] < (C(a) + ) (I2(€, to) [ + [2(=¢, 1)) - (1.50)

Sketch of the proof. 1t is better to go back to the unknown w given in (1.35). So that we write
Z(S, t) T e:Fia,2 lgtw,

and w is a solution of .

iwy + Wy £ %(w+w) —i0)

We define for £ # 0

Then

(1.51)



Theorem 6. Let 0 < a and 1 € L' N L? small with respect to a. Then there exists a unique

solution ¢ of

2
Yy = i<wss+%(|¢|2—%>¢) D21
(1) = 1+ aet/
such that

b(s,t) — %eis% e L ((0,1), L) N L* ((0,1), L®).

Moreover, there exists 1. € L? such that

< ca, )t b1 || panze,

a - ; :
||’¢(t) o _6132/4t o e:l:z<12 lgtezt8§¢+
Vi L ((0.1).02)

for any 0 < § < 1/4, and for |z| <2

2129+ (2)] < e(a, 891l 1nze-

(1.56)



Theorem 7. Lt 0 < a and x1(s) a regular curve with (c1,71) the corresponding curvature and
torsion. We define

¢1(8) _ Cl(S)eifos T1(s") ds’ : ul(s) _ e—i32/4¢1(8) —a,

and assume that uy € L' N H? and it is small with respect to a.

Then, there exists a unique reqular solution x(s,t) of (1.2) for 0 < t < 1 with x(s,1) = x1(s).
Moreover, its curvature and torsion (c,T) satisfy

a

Vit

and taking xo(s) as in (1.58) then

c(u1)
~ 41/47F

c(s,t) —

’ |T(S’t)_2_t‘§t3/4+,

[X(s,t) = x0(s)| < e(ur)Vt.



Several corners
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The regular polygon



tpg = (27T/M2) (r/q)

oo
P(stpg) = o—i(ME)?2mp/(M?q)+iMks
k=—o00
@)
— Z o—2mi(p/Q)k>+iMks
k=—o0
g—1 oo
:Z Z o—2mi(p/q) (ak+1)*+iM (qk+1)s
=0 k=—oc
q—1 .

e_QWi(p/Q)F—I—'L’Mls § : GiquS

|
o

k=—00
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The generalized quadratic Gaufl sums are defined by

|e[—1

Z 27i(al®4bl)/c
€ Y

=0

for given integers a, b, ¢, with ¢ # 0.

( \/aewm, if ¢ is odd,

G(—p,m,q) = { 2qe?™, if q iseven and ¢/2=m mod2,

0, if ¢ is even and ¢/2 #%m mod 2,

\

for a certain angle 6, that depends on m (and, of course, on p and
q, t00).
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THE TALBOT
EFFECT
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Figure 9:

Stereographic projection of the right-hand side of Figure 8.
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max(|kT5 (k)|

M =3; ¢q=120000; 1920000 freq.
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Figure 10: |[v2max;,, | T1.4(tpq)]loc — aln(g) — b], for a = 0.258039752572419, b = 0.152992510344641.
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