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Turbulence and intermittency
• Turbulent flows are known to generate very large velocity gradients, the 

more so as the Reynolds number increases.

(a) Laboratory experiment;
low Reynolds; Rl ~ 100.
(b) Atmospheric boundary layer;
high Reynolds; Rl ~ 1500.

Phenomenon known as Intermittency 
(see e.g. Batchelor and Townsend, 1949). 

Meneveau and Sreenivasan (1991)



Large velocity gradients in turbulent flows:
 how large ?

e = kinetic energy dissipation is independent in the zero viscosity limit n → 0  
[empirical fact; aka “the dissipative anomaly”] 

Þn ⟨ (∂u)2⟩ ~ e ~ (U3/L)
  The variance of the velocity gradient increases as a function of the Reynolds 
number: 

⟨ (∂u)2⟩ ∝ (e/n)  ≃  (U/L)2Re
• In addition, the largest values of the gradient grow with Re much faster 

than their mean values [intermittency].

 Very large velocity gradients could be generated in the bulk, away from 
boundaries. 



Gradient amplification ? 
Vortex stretching
... a very important ingredient in turbulent flows  (cf. Tennekes and Lumley) !!!

Equation for the vorticity:

       ∂t w(x,t) + (u.𝜵)w = (w.𝜵)u + n 𝜵 2 w(x,t)

How much stretching can the term: (w.𝜵)u a ≡ wb.Sba (S strain-rate tensor) produce?

 Dimensionally, S and w are both velocity gradients. Superficially,
      dw/dt = S. w ~ w2

 Solution: w(t) = w(0) /(1 – w(0)t)… blows up at t* = 1/w(0) 
~ Naïve expectation:       /w/ ~ |∂v| ~ 1/(t*-t)



Homogeneous isotropic turbulence
Isotropy: fluctuations are invariant under any rotation – invariance ender SO(3).

 Homogeneity: the flow properties do not vary in space.

• Conceptually simplest setup to study turbulence. Introduced by Taylor (1936), 
further development by von Karman-Howarth (1938), Kolmogorov (1941), etc etc.

• In practice, flows are stirred in a very anisotropic manner. However, due to 
turbulence, the flow develops a wide range of length scales, and at the smallest 
scales, one postulates (expects, etc) that isotropy is restored. 

•  Convenient to simulate numerically via direct numerical simulations (DNS) of the 
Navier-Stokes equations.



DNS of turbulent flows:
Constraints on intermittency studies



Issues with any intermittency studies

  Large velocity gradient ~ (large velocity difference)/(small distance)
    ~ 1/(small time) 
 
 => make sure that spatial resolution is good enough
 => ensure proper time resolution
 => Existence of rare events: statistical convergence is an issue.
 
In this work: use direct numerical simulations  (DNS) of the Navier-Stokes 
equations at very high resolution, based on pseudo-spectral methods.



Studying the velocity gradient tensor: 
spatial resolution issues

§ How much can one trust the information concerning large velocity gradients 
from a limited spatial resolution ?

The usual resolution criterion for DNS using spectral methods involves :
o  the smallest length scale in the flow, the Kolmogorov scale: h = (n3/e)1/4

o  the highest wavenumber resolved: kmax ≈ (√2/3) N, where N is the total 
number of Fourier modes in any spatial direction.

An accepted criterion for a good simulation :                   kmax h ≈ 1.5 - 2

In terms of the smallest length resolved: Dx/h [≈ 3/(kmaxh)] ≈ 2 - 1.5



Studying the velocity gradient tensor: 
temporal resolution issues

• Spectral calculations are limited by a Courant-Friedrich-Lewy condition:
  
  Dt ≲ Dx/|u|

The mesh size Dx ~ h ~ L Rl-3/2, so      D t  < (L/U) Rl
-3/2. 

 => the time step chosen is therefore much smaller than tK ~ (L/U) Rl-1, 
which is the time scale associated with the rms of the velocity gradients.

      … however …
 



Studying the velocity gradient tensor: 
temporal resolution issues

BUT !!!   Velocity gradients MUCH larger than 1/ tK appear in the flow.

 Define:          Dt = C Dx/|u|max  ;    C = Courant #

 => Stability of the integration algorithm (C  ≲ 1) isn’t good enough; taking too large 
a time step may lead to spurious results (Yeung, Pope and Sreenivasan, 2018). 
 

 

Max values of e  and 
W (≡ |w|2 ) as a function 
of time

Rl = 390

kmax h = 1.4 (red)
            = 2.8 (green)
            = 5.6 (blue)



Resolution in our study
• Here, use:   Courant # = 0.3 

 kmax h larger than 3;  or equivalently:  Dx/h smaller than ~1 
  

 nb: most runs in fact at kmax h ≈ 6.  (Dx/h ~ 0.5)

 Use a spectral code (Rogallo 1981) with up to 122883 modes/colocation points (a 
few time steps with 184323 modes).

       
nb: Ns = # of fields considered to construct the statistics.      



Intermittency in DNS of turbulent flows



Structure of the regions of intense 
strain/vorticity



Spatial structure of strain and vorticity
The largest velocity gradient structures are vortex tubes (as found many 
times before, e.g. Siggia, 1981 (…) Ishihara et al, 2007, 2009).

Ø Strain (red) is comparatively 
much Smaller than vorticity 
(cyan). 

Ø The most intense regions of 
strain and vorticity are not 
co-located.

Buaria et al, NJP 2019



Structure of strain and vorticity

• The most intense events are vortex tubes; possibly in weak interaction. 

Blown-up view of the most 
intense velocity gradient region.

Buaria et al, NJP 2019



Vortex tubes: not just "in-silico”

• Visualization of the vortices with cavitation bubbles
(see also Douady et al, PRL 1991 etc).

LaPorta et al, PoF 2000



PDF of W = w2 and  S = 2 tr(S2)

Ø The distribution of W/⟨W⟩ 
become wider when Rl 
increases.

Ø Same conclusion S, defined 
as S = 2 tr(S2); 

Ø the fluctuations of S/⟨S⟩ 
are slighltly smaller than 
those of W/⟨W⟩.

Buaria et al, PRL 2022



Velocity differences at scales ≤ h.
• Observation:
Velocity differences dur can be as large as u’, the r.m.s. velocity (Jimenez et al, 1993).
If anything, the velocity diff. at h/2  (and also h) grows when Rel increases. 
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T: transverse velocity differences;
L: longitudinal velocity diff.

Buaria et al, NJP 2019



Two main numerical observations.



Main result:

 PDF of W tK
2  and S tK

2 show tails that 
rapidly grow when Rel increases.

 The tails of these PDFs can be very well 
collapsed by rescaling with Rel2b -- 
which means that the largest fluctuations 
of vorticity and strain scale in fact like:

     w, S ∝ 1/text = Relb/tK

text ~ tK Rel-b

Observation 1:
Scaling of the large gradients with Rel.

Definitions: W = w2; S = 2 tr( S2).
Buaria et al, PRL 2022



Scaling of the PDF: a systematic approach
• Observe that the distribution can be well fitted by  stretched 

exponential functional form: P(x) = a exp(-b xc ) where the exponent 
c ~ ¼.
• Fit the data with a given value of the exponent c around ¼, and look 

for the dependence of b as a function of Rl:

Conclusion:  

Values of b1/c are consistent with the 
observed collapse of the PDFs.



Observation 2:
Strain acting on large vorticity.

• Question: What is the strain for a vortex with a very large vorticity?

Answer: 

the strain S (= 2 tr(S2)), conditioned on W (= w2) 
grows as  ⟨S|W⟩∝ W g   ;
                
 
Exponent:  g is a function of Rl (see inset). 

⟨S|W⟩∝ W g

Buaria et al, PRL 2022



Interpretation



Size of a strained vortex.
• The size of a vortex tube results from a balance between 
viscosity and strain (think of a Burgers vortex): 
       hBurgers ~ radius ~ (n/Sout)1/2 

•  A guess for the strain acting on an intense vortex of intensity W:  
     ⟨S| W⟩ tK2  ∝ (WtK2) g

=> suggests that the size R(W) of an intense vortex, of intensity W, is: 

   R(W) = (n2/⟨S|W⟩)1/4 ~ hK (tK2W)-g/4 

Sout = 
straining rate

Hamlington et al., 
PRE 2008

Buaria et al, PRR 
2021.



Connection with the observed scalings.
The velocity difference across very intense tubes is ~u’ :

    W ~ u’2/R(W)2

Solve:      W tK 
2∝ Rel 

2/(2-g)  

  + identify with earlier definitions:           b = 1/(2-g).

§  This  agrees quantitatively with our own numerical values !

Corresponding smallest scale:      u’/hext ~ text

  =>  hext ~ hK Rel-a ;    a = b-1/2 = g/ [2(2-g)]
See Buaria et al, NJP 2019
 and PRL 2022.



Rl-dependence: 
implications for the fits of the PDFs

• Postulate that the tails of the PDF behave as:
(empirically, c is a fixed number ~ ¼).

• Superposition of the PDFs by rescaling x by (x Rl
b)  :    b1/c ~ Rl

-2b

• write the relation above as an ODE:            
  d ln(b1/c)/d ln(Rl) = -2b

•   Use:  b = 1/(2-g)       with                   g = 1- p Rl
-q

• Solve (…calculate an integral…).



Rl-dependence of the PDFs

• Also use b = 1/(2-g) and write the re

 with :                           g = 1- p Rl
-q✓

Dashed line: result of the calculation 
With the functional fit for g: 

✓
Dependence of b on Rl : plausibly (?)     b ⟶ 1 when Rl ⟶∞

Buaria + AP, PRL 2022



How close can one get to the Rl infinity 
asymptotic regime ?

IF the fit proposed for g 
holds…

… then, the Rl ➝∞ regime
(say g > 0.99) 
is unreachable on Earth !
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Analysis of strain:
local and nonlocal aspects and

implications for the regularity of Navier-
Stokes



Relation between strain and vorticity is nonlocal (~  Biot-Savart relation) !

Here: separate the local (L) and nonlocal (NL) contributions to strain:

 

Nonlocal relation between strain and 
vorticity



Decomposition: practical aspects
Performing the Biot-Savart directly is prohibitively costly from a numerical point of view !

 An other approach: use the expansion (Hamlington, PRE 2008)

In Fourier space, this can be re-expressed (Buaria et al, Nat Comm. 2020):

Þ Efficient way to compute of SNL ; practical from a numerical point of view. 
Þ Our results agree with the available data from Hamlington et al. (Phys. Fluids, 2008).



How much local (self-) amplification for 
extreme events ?

Upper row: Enstrophy (W = w2)

Lower row: Amplification term:
PLW = w.SL.w

with R = 2 h.

 Main observation: 
PLW is negative when W is large.

Buaria et al, Nat. Comm., 2020

50 h



How much local (self-) amplification for 
extreme events ?

Statistical analysis: compute the conditional average of the production term.
 

n.b.: It turns out that the production 
term, 
PLW = w.SL.w 

is almost always negative when 
  R ≲ 2 h

 => self-attenuation of vorticity.

Buaria et al, Nat. Comm, 2020



Self-attenuation and “helicity”

Analysis of the flow (…)
=> 
there must be some alignment 
between vorticity and velocity in the 
most intense vortex structures, as 
observed numerically
(also noticed by Choi et al, PRE 2009).

Buaria et al, Nat. Comm., 2020



Lessons for Navier-Stokes regularity

• Lesson learned: in DNS, no self-amplification of the most intense 
vortex structures. On the contrary, “self-interaction” leads to a 
weakening of the vortex. 

 => the very intense events cannot be infinitely strong.

• Understanding the physical origin of the effect, and generalizing the 
numerical results to “any flow” would be sufficient to show regularity 
of the Navier-Stokes equations (Constantin et al. Comm PDE, 1996).



Decomposition of strain: 
implications for the regions of intense velocity 

gradient.  



Local vs. nonlocal strain
Obvious remarks: 
•  when R/h → 0, SNL ~ S, SL ~ 0
•  when R/h → ∞ , SNL ~ 0, SL ~S

⇒ there exists a scale r, at which the 
two are comparable:

r ~ 10 h

 nb: this scale does not depend very 
much on Rl.

→



Local vs. nonlocal strain: conditioning on 
vorticity

Condition on the intensity of 
vorticity, W.

⇒  When W  increases, the size 
r(W) at which |SNL| ~ |SL| 
decreases.

 Dependence of r on W ?
 

W ➚

LNL

Full lines: Rl = 1,300;
Dashed lines: Rl = 650.



Dependence of the size on W

Plausible scaling of r(W) :
r(W) ~  W-g/4.

… as expected based on the phenomenological argument
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Is there some underlying “self-similarity” ?
With what we know, the answer appears to be negative.

 For the most extreme events, the stretching induced by the local contribution of 
strain changes sign: 

(w ⋅ SL ⋅ w)  becomes < 0 for W ≳ 100.
 ~ The local strain opposes further growth of vorticity when W  reaches extreme 
values (Buaria et al, Nat. Comm. 2020).

=> This effectively breaks the self-similarity (in W ) .
     
 
     



Conclusions

• The very large fluctuations of the velocity gradients behave as Rl
b/tK, 

with 
b = 0.775 ± 0.025 over the range of Reynolds number considered (140 
≤ Rl ≤ 650).
• The largest gradients consist of vortex tubes, with a velocity jump ~ 

urms; over a distance ~ hK Rl
a, with a = b-1/2.

• Relation with the straining rate ⟨ S2|W2⟩∝W g; with b = 1/(2-g).
• Characteristic size of the vortices seems to emerge: r(W) ~ W -g/4.

      … but only approximate self-similarity …
 ~ Slow variation of g; hence b. What is the Rl→∞ limit ??



Thanks for your attention!

Questions ?

Supercomputing resources:
GCS/JSC (Juqueen/Juwels), XSEDE (Stampede2/Frontera)
- Talk based on the following references:
- D. Buaria, A. Pumir, E. Bodenschatz and P.K. Yeung, New J Phys 21, 043004 (2019)
- D. Buaria, A. Pumir and E. Bodenschatz, Nat. Comm. 11, 5852  (2020)
- D. Buaria and A. Pumir, Phys. Rev. Res. 3, L042020 (2021)
- D. Buaria and A. Pumir, Phys. Rev. Lett. 128 , 094501 (2022)
- D. Buaria, A. Pumir and E. Bodenschatz, Phil. Trans. A 380, 20210088 (2022).
- D. Buaria and A. Pumir, in preparation (2023).


