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Euler equations for inviscid incompressible fluid of uniform density
in R3:
u: + (u-V)u=—-Vp,

divu=0, xeR3 t>0.

where the velocity field u and the pressure p are unknowns.



Let .
W=Vxu u=Vxy
The stream-vorticity formulation
0@+ (u-V)J—(&J-V)u=0,

o - 1 1 SV
u=Vxi, Wﬂ:ﬂ/w (5V)

W(y,t)dy.
ey 20 )




Vortex rings. Solutions to Euler equations with vorticity
concentrated around travelling circles with thin section

Leapfrogging. Interaction of several vortex rings moving in the
same direction along the common symmetry axis
Helmholtz (1858)



Axisymmetric No-swirl Euler:
The velocity:

u(x,t)=u"(r,z,t)e, + u*(r,z,t)e,, x = (rcosb,rsinb,z),

where e, = (cosf,sin6,0), eg = (—sin 6, cosb,0), e, = (0,0,1).
The vorticity & =V x u

G(x,t) =w¥(r,z,t)ep, where w’ = d,u" — 9,07

The divergence free condition V -u = 0:

o= 0, W =0 (rt), AT =3, = yle

inX:={(r,z)/r>0,zcR}.



With the change of variables

the Euler equations become

0,0(0,2,t) =

[(r,z)|]—o0

row +V=EH(r*)) - Vw=0, —Asp=w inX,
0,

t>0

where V14 = (-0, 9,)

3
ASw = 8rr'¢ + ;6r'¢ + 5zz¢~

Ukhovskii-Yudovich [68], Danchin [07].

Unique global-in-time solution if w’(-,0), r=1w?(-,0) € L' N L>®(R3)



Vortex rings




A vortex ring is a travelling wave solution with constant speed ¢
along the z-axis

row +VEH(r*)) Vw =0, —-Asp=w inXZ
80(0,2,6) =0,  lim (r,z 1) =0. ()

|(r,z)| =00

It has the form
w(r,z,t) = Wo(r,z—ct), (r,z,t) =Vo(r,z—ct),

where Wy and Vg solve

val (rz(wo _ %)) VW =0, —[0%+ %8, + Vo= Wo | (%)




Remark: If Wy(r, z) satisfies a semilinear equation of the form
>, 3 2 2 ¢ :
(02 + 20, + o = £ (P(Wo— 3))  inE,
for an arbitrary nonlinearity f, then
c
W07 WO = f <f2(W0 — 5))

solve

vt (r2(w0 - %)) VW =0, —[0%+ %a, TR W = Wy | (+%)

Fraenkel (1970, 1972), Maruhn (1957) Vortex rings with very small
cross section



Assume (W.,W.) is a vortex ring with e-concentrated vorticity

1 X — (ro, 0)
r WE(I’7Z) = ?U (5
We take the Rosenhead-Kauffmann Scully vortex.

8

= R2
a+ype 7S

Uly) =

The Green's function for Ag := 02 + 29, + 92,

0G

—AsG(x, Py) = 8mdp,, ——(0,z)=0, G(x,Py)—0

ar

Locally around Py, G(+, Py) has the expansion

) — 8mdp,, Po=(r,0), x=/(r,z).

as |x| = oo

Glx, Po) = log 1 — 5 (1= 5-(r = 1) + Of(x = Pof)

|x — Pol*



The stream-function close to Py = (rp, 0)

1 W.(r,2) = log

1 3
@ PR 2 )

)’ X—Po

3
= (—4Iog£ —2log(1+ Mz)) (1 - ﬂgyl

Replacing these approximate expressions into the equation

v+ (rQ(wa - §)> VW, = 2r(V. — %)ez VW, + Vi, - VW



X—PO
£

Near Py = (r,0), in y =

e VI, - VW, & VH(—2log(1 + |y[?)) - VU
=0

3
— 4(loge) (—?)Eez -VU.
0

Combining the terms

4
%% %)+ 6loge| e VU

4l (2 S ~
Y (r (v, 2)) VW, 8[2r0( .



The speed of the vortex ring: (Fraenkel 1970, 1972)

2
c=—|loge|(1+0(1)) ase—0.
o

Helmholtz (1858), Hill's spherical vortex in Lamb (1932), Norbury
(1972-74)

Via constrained variational method: Arnold (1964),
Fraenkel-Berger (1974), Benjamin (1976), Friedman-Turkington
(1981), Burton (1987), Ambrosetti-Struwe (1989)
Conservation laws: Benedetto-Caglioti-Marchioro (2000),
Negrini-Marchioro (1999), Butta-Cavallaro-Marchioro (2022)



If 7 = |logelt, the core of the vortex ring is an e-tubolar

neighborhood of a circle (s, t) of radius R traveling vertically with

constant speed ¢ = gR

c=2/R

|

It solves the bi-normal flow

Vr :2(’75 ><p)/ss) :2"3b7

da Rios' formal computation (1904) for vortex filaments
Daévila, del Pino, Musso, Wei [2021] for helical symmetry
Gutierrez-Rivas-Vega (2003), Banica-Vega (2009,2013,2020,2022)



Leapfrogging: interacting vortex rings




When two vortex-rings interact, Helmholtz predicts the following:

Helmholtz 1858: We can now see generally how two ring-formed
vortex-filaments having the same axis would mutually affect each other,
since each, in addition to its proper motion, has that of its elements of
fluid as produced by the other. If they have the same direction of
rotation, they travel in the same direction; the foremost widens and
travels more slowly, the pursuer shrinks and travels faster till finally, if
their velocities are not too different, it overtakes the first and penetrates
it. Then the same game goes on in the opposite order, so that the rings
pass through each other alternately.

speed ~
P radius



Axi-symmetric no-swirl

row +VEH(rPY) -Vw=0, —-Astp=w inX
0(0,2,6) =0,  lim w(r,zt) = 0. (+)
|(r,z)| = o0
Let W(r,z,7), 7 =|loge| t
w(r,z,t) = W(r,z—2ry " |loge|t,|loge| t),
Problem (x) takes the form
lloge|r 0, WAHV(r? (W —rytlogel))- VW = 0, —As¥ =W,

r>0, zeR, 7€][0,T)

(k)



Formal Derivation of Leap-Frogging
Assume

rW(r,z,r):zk:Uj, U = 21T)U(x—Qj(7')>7 = (r.2)

j=1 & ( &i(7)

This ansatz conserves of circulation. To have conservation of the
L>°-norm for the vorticity we choose

QrE(T) =n Q)= (Q Q)



At main order, near Q;(7)

W(r27) - z Lu(x= 2

Correspondingly: V. (r,z,7) = Zf:l v;

w2 1 3 o
V=2 g (g a) 0 gt~ @)

j=1 Y

x=Qj(r)

Now: fix j and compute the equation near Q;: for y = =

g*r|logel| 0, WN—ErHOgE| Q - VU

and



e'VH(r? (W —rg M |loge]) ) VW = "V (r? (W) — (QF) [ logel) )

vw

=e2

+* V(P Q) = rg Ylloge|) - VW + £*V (2 Z\U,-) vw

i#j

Ql 1
-2 |Iog5|eg+VLZ4rlog VU

i#j [x = Qi

Combining the terms, we get that the equation near Q;
Q' —ro
—r|lo 5774 @) 721 lo ee}-VU ~
[ | g | Z |QJ Q,‘2 o ‘ g | 2 ()/)

i7#J



The location of the centres Q; of the rings

dQ; Q- Q) . Q —n
\Ioge\—J:—4Z g 5 —2——5—|loge|ex
It is convenient to use the ansatz
1
Qj(T) = (n,0) + mqj(ﬂ» Qj(T) = (%‘1(7); %2(7))

Neglecting lower order terms in a fixed interval 7 € [0, T], the limiting
system

%:_42 @=a) 59 <(1)> rel0, 7). (L)

= lg—al?



This is a Hamiltonian system for the energy

K
1
Hk(qla"')qk):_2§ log|ql_qj|_?::|qjl|2
i#i 0 =1

For instance for k = 2 and restricting ourselves to g1 = —g» = g we
arrive at the system

d 1 1
a9 _ L4 il (2) relo, T

dr lg|? I3




Theorem [Daévila, del Pino, Musso, Wei, 2022]

Let g(7) = (g1(7), ... gk(7)) be a solution of System (L) in [0, T].
Then there exists a smooth solution W.(r,z,7) to (* * %) such
that for certain points Q7(7) with the form

ai(r) + O(Iog(\loge\)>7

|loge]

€ — (r 1
QJ(T)7(00)+\/W

we have
k
W.(r,z,T) Z (
=1

x = Qi(7)

&j

) Felrzn), x=(r2)



where U is the bf Kauffmann-Scully vortex

8
Uly) = ">
(1+[yl?)?
2 _ 2 n
€ =¢€ ) and
2 I 60
p(rzm) < S — B e 7

j=1 % 4 ‘x - Qf(T)‘



Remarks
1. Reduced dynamics (L): Dyson (1893), Hicks (1922), Lamb (1932),
Lim (1997), Klein-Majda-Damodaran (1995)

2. Numerical simulations for leapfrogging: Riley-Stevens (1993), Lim
(1997), Cheng-Lou-Lim (2015), Alvarez-Ning (2022)

3. Experiment for leapfrogging: Yamada-Matsui (1978)

4. Jerrard-Smets (2018): gave the first mathematical justification of
leapfrogging in three-dimensional Gross-Pitaeskii equation

1
iy — Au = 6—2(1 —|uf)u in R?

u:R3xR - R?



Ingredients in the construction:
e Improvement of the approximation in powers of e: (w},¢?)

e Setting up the problem as a coupled system of inner problems near the
singularities and and an outer problem more regular (the inner-outer
gluing scheme)

e A priori estimates to solve by a continuation (degree) argument.
Dévila, del Pino, Musso, Wei (2020): point concentration for 2-d Euler
equations

u}
o)
1
n
it



where

Sketch of the proof. We want to solve the equation S(w, ) =0,

S(w, 1) := |loge|rdw + V+ [rz(w — logel)] - Vw =0,
—A5’g/) = w.

Introduce cut-off functions

1 s<1
0 s>2

ni(x. t) = n(llogellx — @), n(s) = {

DA



The inner-outer gluing scheme

w0 t) =02+ 30 (Y ()
j=1 J €j
2 el

wixt) = wr + > T g(F b + ¢ (x, 1)
j=1 rJ'EJ J

where —A5w = W, ¢j = —A5J’¢j

3¢j x — Q;
Asjy = —[Dyy+ ———- 11/0] y=—"
J J J

The problem becomes

E" ¢, vy, %", Q] =0, j=1,2,

S(w,vp)=0 if
(OJ 1/}) | {Eout[¢out Our,gbj,l/ij, Q] -0



A simplified version of Ej”
Ej"”(y, t) = 512\ log €|0:pj + €| log e| V¢ - 0: Q;
+ Vvt ((1 + %yl) r0> Ve+V+ ((1 - f{yl)wj) VU
J J
+ V- ((1 + (0 + rjw"“f)) Vo,
J

+ 1 €fnals y € B(0,e Y loge|™), t € [0, T)

where To(y) = —2log(l + |y[?), y = X;Qf, Q; = (r;,z), and e}, is the
final error

€ina = €5 S(WSL 02 (ejy + Q)



A simplified version of E°Ut

E%t(x,t) := |loge| r ¢2“" + Vi (r?(W0 — ry | logel)) - Vg™t

2
+ Z [r |loge| 01 + VXL(rZ(\I!O — r0_1| Iog5|))Vﬁ1j] 6%
j=1 i
2
+ (1= n)S(w ) =0 r>0zeR, tc[0,T)
j=1

To decouple the inner and outer problems, we need the inner functions ¢;
to decay as p becomes large



For the inner problem we solve in R?

£2|logelopr — VETo-V(AY + f/(To)) + E(y,t) =0, ¢(y,0) =0
—AY=¢ inR%?x0,T]

A central ingredient is an L°-a priori estimate:
Lemma: A priori estimates If ¢ is a solution and satisfies
certain orthogonality conditions, then the following estimate holds

1 1 1
6, ) U2 | 2@y < Ce2[loge| ™2 sup [[E(-, t)U 2 2me)
tel0,T]




The inner problem

| logelge — VI To-V(AY + F/(To)1h) + Q(¢) + €fpa = O,
#(y,0)=0, —Asp=¢ inR?>x][0,T]

The whole construction works if we get to an approximation
(w}, %) with a final error

. 5| logel?

€final = EEV g >0



How do we improve the approximation? Recall

X—Qj

Wé’(X’t):jZlE;,jU( . 0=(3)
B0 =3 Log L [ 20 )
S P EHx=QP? | 2y
The points
Qi =(ro, 0) + ! bi(t) + aj(t)

V| loge|

with [aj(t)|1=(0,7) < €% So: |Q1 — Q2| ~ —=

Vlloge|’




Improvement of the error near Q;

The inner equation:
8J2| log €|0:pj + €| log £]0: Q;j - Vo,

Ej 2¢;
shnlo ) VoV + ) vU
J

+ Vvt (ro +
21j

+ Vvt <(1 + %yl)%bj + rﬂpm)) Vi + e ~0
J

where gg is the initial error

2

e*|log £| x—Q;

€ = E, = lyl, = —.
0 14 2 p=1yl, ¥ £



Lety:X;—Q1

L Y= pe'’. Assume the error

E(-y7 t) - Z En(/)a t)einev En(p-/ t) — / E(peie, t)einede_

If Eg = 0: we solve the elliptic equation
Vile - Vo+ Vi - VU+E=0, —Ay=p.
Since U = e, the problem becomes

—V,To- V(A + Up)+ E=0



In polar coordinates y = pe’ we see that

4 0

Ay + Uy

The operator L (for Liouville) is highly degenerate:
e All radial functions are in its kernel

e Kernel of

A+ Uyp =0, <2+ Vlg-y,0,00,0),l0>

We can use L for E,, only for n > 1. We need to adjust the
position of the points when n = 1.



We cannot use £ to improve Ep. In this case we solve the ODE

512\ log |03 + Eg = 0.

To get spacial decay, we solve with the transport equation
T(¢6) := |loge| ;06
+ vt <r+ > y1r> Ve
fj



Scheme for the inner approximation

g2 g3 et
g=——b=a=—=F = e=—=k
R TR S AP lﬁ&aj 2T 1420
3 o4 5
= e3 = sinf) = e = Er = e = E
ODE > 1+ p3 8 ¢+ 14p2 2L 7 14p 0
3 4 3
5 5 5
>e6=—-56 = = Eo = eg= sinf
FO T I S s T T I B BT 1 5
e = et e i E
L&a; TR R 1+p30



Thanks for your attention



