

Breaking description in depth-averaged models

Maria Kazakova

LAMA (Laboratoire de Mathématiques), Université Savoie Mont Blanc

Collaborateurs: Gaël Richard, Julien Chauchat Frederic Couderc, Rémy Baraille, Jean Paul Vila, Arnaud Duran Yen-Chung Hung

> 2nd Advanced Summer School 20-30 June 2023 in Cargèse, Corsica

> > g

Water waves models

 $\frac{\text{Free-surface incompressible Euler}}{t > 0, \vec{x} \in (\mathbb{R}^3, b(\vec{x}) < z < \boldsymbol{\eta}(t, \vec{x}))}$

$$\left\{ \begin{array}{l} u_t + (u \cdot \nabla)u = -\frac{1}{\rho} \nabla p + \boldsymbol{g} \\ \nabla \cdot u = 0, \quad \boldsymbol{g} = (0, 0, -g) \end{array} \right.$$

+ kinematic and dynamic boundary conditions

Water waves models

$$\mu \equiv \delta^2 = H^2/L^2 \text{ (shallowness)}$$
$$\varepsilon = a/H \text{ (nonlinearity)}$$

Hydrostatic pressure constant velocity over vertical u(t, x, z) = v(t, x)

1

$$\begin{cases} \frac{\partial h}{\partial t} + \nabla \cdot (h\boldsymbol{v}) = 0, & \text{(Mass Eq)} \\ \frac{\partial h\boldsymbol{v}}{\partial t} + \nabla \cdot \left(h\boldsymbol{v} \otimes \boldsymbol{v} + \frac{gh^2}{2}\mathcal{I} + p_{NH}\right) = 0, & \text{(Momentum Eq)}. \end{cases}$$

model	NSWE $\mathcal{O}(\mu)$	$\mathcal{O}(arepsilon\mu)$	SGN $\mathcal{O}(\mu^2)$	
Pressure	$p_{NH} = 0$	bs	$p_{NH} = h^2 \ddot{h}/3$	
ε	no assump	sine	no assump.	
Туре	hyperbolic	Bous	dispersive 🕮 La	nnes, 2013

Motivation

Motivation

Water Waves

Breaking waves

Motivation

Advances on wave breaking modelling

Artificial dissipative terms

+ Viscous term in (Moment Eq) + Convective term in (Mass Eq)

NSWE:

Packwood&Peregrine, 1981

Boussinesq :

- 🕮 Zelt, 1991
- 🕮 Wei *et al.*, **1999**

Hybrid method/Switching

- Drop Dispersive terms

Boussinesq type:

- Bonneton et al., 2011
- Tissier *et al.*, **2012**
- Kazolea et al., 2014
- 🕮 Duran&Marche, 2015

Advances on wave breaking modelling

Artificial dissipative terms

+ Viscous term in (Moment Eq) + Convective term in (Mass Eq) Hybrid method/Switching

- Drop Dispersive terms

When? Breaking criterion

Advances on wave breaking modelling

? Assumption on the velocity profile no valid! $u = U(t,x) + u^\prime(t,x,z)$

(flat) (linear) (polynomial)

NO BREAKING

Hyperbolic framework

Eshukov, **2007** 2D hyperbolic

Dispersive (conservative!) framework

- Eastro&Lannes et al., 2014
- Richard&Gavriluyk et al., 2015 Dispersive
- BACENoble, **2016** two-layer flow

ADD DISSIPATION

Richard&Gavriluyk **2012** Hydraulic jumps

Gavriluyk *et al.*, JFM, **2016** Breaking waves in two-layer model

Ivanova&Gavriluyk 2018 Hydraulic jumps

Advances on wave breaking modelling

? Assumption on the velocity profile no valid! u = U(t, x) + u'(t, x, z)

NO BREAKING

Hyperbolic framework

E Teshukov, **2007** 2D hyperbolic

Dispersive (conservative!) framework

- E Castro&Lannes et al., 2014
- Richard&Gavriluyk et al., 2015 Dispersive
- \mathfrak{MK} Noble, **2016** two-layer flow

ADD DISSIPATION

Richard&Gavriluyk 2012 Hydraulic jumps

Gavriluyk et al., JFM, **2016** Breaking waves in two-layer model

Ivanova&Gavriluyk 2018 Hydraulic jumps

Advances on wave breaking modelling

? Assumption on the velocity profile no valid! $u = U(t,x) + u^\prime(t,x,z)$

NO BREAKING

Hyperbolic framework

Teshukov, **2007** 2D hyperbolic

Dispersive (conservative!) framework

- Eastro&Lannes et al., 2014
- Richard&Gavriluyk et al., 2015 Dispersive
- \mathbb{I} \mathcal{MK} Noble, **2016** two-layer flow

ADD DISSIPATION

Richard&Gavriluyk 2012 Hydraulic jumps

Gavriluyk et al., JFM, 2016 Breaking waves in two-layer model

Ivanova&Gavriluyk **2018** Hydraulic jumps

Model derivation

The filtering decomposition

$$\boldsymbol{v} = \overline{\boldsymbol{v}} + \boldsymbol{v}^r$$
.

Two-dimensional filtered equation

$$\begin{split} &\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{w}}{\partial z} = 0, \\ &\frac{\partial \bar{u}}{\partial t} + \frac{\partial \bar{u}^2}{\partial x} + \frac{\partial \bar{u} \bar{w}}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{1}{\rho} \left(\frac{\partial A^r_{xx}}{\partial x} + \frac{\partial A^r_{xz}}{\partial z} \right) + \nu \left(\frac{\partial^2 \bar{u}}{\partial x^2} + \frac{\partial^2 \bar{u}}{\partial z^2} \right), \\ &\frac{\partial \bar{w}}{\partial t} + \frac{\partial \bar{u} \bar{w}}{\partial x} + \frac{\partial \bar{w}^2}{\partial z} = -g - \frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{1}{\rho} \left(\frac{\partial A^r_{xz}}{\partial x} + \frac{\partial A^r_{zz}}{\partial z} \right) + \nu \left(\frac{\partial^2 \bar{w}}{\partial x^2} + \frac{\partial^2 \bar{w}}{\partial z^2} \right), \end{split}$$

 A_{xx}^r , A_{xz}^r , A_{zz}^r are the deviatoric part of the residual stress tensors which modelled by a turbulent viscosity hypothesis having the form

$$A_{xx}^r = 2\nu_T \frac{\partial \bar{u}}{\partial x}, \ A_{zz}^r = -A_{xx}^r, \ A_{xz}^r = \nu_T \left(\frac{\partial \bar{u}}{\partial z} + \frac{\partial \bar{w}}{\partial x}\right)$$

Model derivation

Navier-Stokes
$$\xrightarrow{\int \uparrow \downarrow} O(\mu^2) + dissipation$$

Mass equation:

 $\frac{\partial \tilde{h}}{\partial \tilde{t}} + \frac{\partial \tilde{h} \tilde{U}}{\partial \tilde{x}} = 0$

Ox-Momentum equation:

Stress tensor is modeled by turbulent viscosity ν_{T} and shear stress

7

$$\frac{\partial \tilde{h}\tilde{U}}{\partial \tilde{t}} + \frac{\partial}{\partial \tilde{x}} \left(\tilde{h}\tilde{U}^2 + \frac{\tilde{h}^2}{2} + \mu^2 \tilde{h} \int_{\tilde{b}}^{\tilde{\eta}} \tilde{u}'^2 d\tilde{z} + \mu^2 \int_{\tilde{b}}^{\tilde{\eta}} \tilde{p}_N d\tilde{z} - \mu^2 \boxed{2\tilde{\nu}_T \tilde{h} \frac{\partial \tilde{U}}{\partial \tilde{x}}} \right) = -\tilde{p}(b) \frac{\partial \tilde{b}}{\partial \tilde{x}}$$

Oz-Momentum equation:

$$\int_{\tilde{b}}^{\tilde{\eta}} \frac{\partial \tilde{w}}{\partial t} + \frac{\partial \tilde{u} \tilde{w}}{\partial x} + \frac{\partial \tilde{w}^2}{\partial z} d\tilde{z} = -\tilde{p}_N(\eta) + \tilde{p}_N(b) + \text{stress tensor terms},$$

Defining $\tilde{\varphi}$ (enstrophy)

$$\tilde{\varphi} := \frac{1}{\tilde{h}^3} \int_{\tilde{b}}^{\tilde{\eta}} \tilde{u}'^2 d\tilde{z}.$$

Model derivation

Navier-Stokes
$$\xrightarrow{\int (\mu^2)} O(\mu^2) + \text{dissipation}$$

$$\begin{cases} \frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(h\mathbf{u}) = 0, \\ \frac{\partial (h\mathbf{u})}{\partial t} + \frac{\partial}{\partial x}\left(h\mathbf{u}^2 + \frac{gh^2}{2} + \frac{h^2}{3}\frac{D^2h}{Dt^2} + h^3\varphi\right) = \partial_x\left(h\nu_T(x)\frac{\partial \mathbf{u}}{\partial x}\right) + G_b \\ \frac{\partial (h\varphi)}{\partial t} + \frac{\partial}{\partial x}(h\mathbf{u}\varphi) = \nu_T(x)\left(\frac{\partial \mathbf{u}}{\partial x}\right)^2 - D(x), \quad \frac{Dh}{Dt} = \frac{\partial h}{\partial t} + \mathbf{u}\frac{\partial h}{\partial x} \end{cases}$$

Le Métayer *et al.* 2010

· ~ ·

Model derivation

Navier-Stokes
$$\xrightarrow{\int \uparrow \downarrow} O(\mu^2) + dissipation$$

$$\begin{cases} \frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (h\boldsymbol{u}) = 0, \\ \frac{\partial (h\boldsymbol{u})}{\partial t} + \frac{\partial}{\partial x} \left(h\boldsymbol{u}^2 + \frac{gh^2}{2} + \frac{h^2}{3} \frac{D^2 h}{Dt^2} + h^3 \varphi \right) = \partial_x \left(h \ \nu_T(x) \ \frac{\partial \boldsymbol{u}}{\partial x} \right) + G_b \\ \frac{\partial (h\varphi)}{\partial t} + \frac{\partial}{\partial x} (h\boldsymbol{u}\varphi) = \nu_T(x) \left(\frac{\partial \boldsymbol{u}}{\partial x} \right)^2 - D(x), \quad \frac{Dh}{Dt} = \frac{\partial h}{\partial t} + \boldsymbol{u} \frac{\partial h}{\partial x} \end{cases}$$

Le Métayer et al. 2010

Model derivation

Navier-Stokes
$$\xrightarrow{\int } O(\mu^2) + dissipation$$

$$\begin{cases} \frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (hu) = 0, \\ \frac{\partial (hu)}{\partial t} + \frac{\partial}{\partial x} \left(hu^2 + \frac{gh^2}{2} + \frac{h^2}{3} \frac{D^2 h}{Dt^2} + h^3 \varphi \right) = \partial_x \left(h \nu_T(x) \frac{\partial u}{\partial x} \right) + G_b \\ \frac{\partial (h\varphi)}{\partial t} + \frac{\partial}{\partial x} (hu\varphi) = \nu_T(x) \left(\frac{\partial u}{\partial x} \right)^2 - D(x), \quad \frac{Dh}{Dt} = \frac{\partial h}{\partial t} + u \frac{\partial h}{\partial x} \end{cases}$$

Le Métayer et al. 2010

Soliton test & Convergence

Taking into account nonlinear and dispersive effects yields existence of solitary wave solution.

It is an important physical phenomenon, which can be observed experimentally (first, discovered and described by John Scott Russell, a naval architect from Glasgow)

Soliton test & Convergence

$$\begin{aligned} h(x,t) &= h_0 + h_0 \xi(x,t), \quad u(x,t) = c_0 \left(1 - h_0 / h(x,t)\right) \\ \xi(x,t) &= \frac{2a \left(Fr^2 - 1 - 3\tilde{\varphi}\right)}{Fr^2 - 1 - (3 + \tilde{a}^2)\tilde{\varphi} + (Fr^2 - 1 - (3 - \tilde{a}^2)\tilde{\varphi})\cosh(\kappa(x - c_0 t - x_0))} \\ \kappa &= \sqrt{\frac{3(Fr^2 - 1 - 3\tilde{\varphi})}{Fr^2}}, c_0 = \sqrt{g \left(h_0 + \tilde{a} + \tilde{\varphi}(3h_0 + \tilde{a})\right)} \end{aligned}$$

Soliton test & Convergence

12/22

Experimental Data Comparison

Experimental Data Comparison

Experimental Data Comparison

Entrophy evolution

Virtual enstrophy : breaking criterion

$$\begin{cases} \forall t > t_* \quad \mathrm{SGN} + \frac{\partial h\psi}{\partial t} + \frac{\partial (hU\psi)}{\partial x} = \frac{8h\sqrt{\psi}}{R} \left(\frac{\partial U}{\partial x}\right)^2 - C_r h^3 \psi^{\frac{3}{2}}, \\ t_* : \max_x (\psi(t_*, x)) \ge \psi_0 \\ \forall t > t_* \quad \frac{\partial h\varphi}{\partial t} + \frac{\partial (hU\varphi)}{\partial x} = \frac{8h\sqrt{\varphi}}{R} \left(\frac{\partial U}{\partial x}\right)^2 - C_r h^3 \varphi^{\frac{3}{2}}. \end{cases}$$

Entrophy evolution

Virtual enstrophy : breaking criterion

$$\psi_0 = \frac{g}{h_0^*} \widetilde{\psi}_0, \quad \widetilde{\psi}_0 = \begin{cases} \left(0.1 + \frac{0.031}{\varepsilon} \right), & \varepsilon > 0.05 \\ 0, & \varepsilon < 0.05 \end{cases}, R = \begin{cases} 1.7, \quad \mu > 0.05 \\ 6, \quad \mu < 0.05 \end{cases}$$

Experimental Data Comparison

 $N_{trial}=3$, h=1.2m , $\varepsilon=a_0/h_0=0.048$

Experimental Data Comparison

 $N_{trial}=41$, h=2.2m , $\varepsilon=a_0/h_0=0.137$

Hyperbolic model for breaking waves

Richard, **2021** (adding new variable for hyperbolic structure)

Model of Kazakova & Richard

Breaking description in depth-averaged models

Hyperbolic model

Model derivation: equations for h, U, W

Navier-Stokes $\xrightarrow{\int } O(\mu^2) + dissipation$

Mass equation:

 $\frac{\partial \tilde{h}}{\partial \tilde{t}} + \frac{\partial \tilde{h} \tilde{U}}{\partial \tilde{x}} = 0$

Ox-Momentum equation:

Stress tensor is modeled by turbulent viscosity ν_T and shear stress

$$\frac{\partial \tilde{h}\tilde{U}}{\partial \tilde{t}} + \frac{\partial}{\partial \tilde{x}} \left(\tilde{h}\tilde{U}^2 + \frac{\tilde{h}^2}{2} + \mu^2 \tilde{h} \left\langle \tilde{u}'^2 \right\rangle + \mu^2 \int_{\tilde{b}}^{\tilde{\eta}} \tilde{p}_N d\tilde{z} - \mu^2 \boxed{2\tilde{\nu}_T \tilde{h} \frac{\partial \tilde{U}}{\partial \tilde{x}}} \right) = -\tilde{p}(b) \frac{\partial \tilde{b}}{\partial \tilde{x}}$$

Oz-Momentum equation:

 $\int_{\tilde{b}}^{\tilde{\eta}} \frac{\partial \tilde{w}}{\partial t} + \frac{\partial \tilde{u} \tilde{w}}{\partial x} + \frac{\partial \tilde{w}^2}{\partial z} d\tilde{z} = -\tilde{p}_N(\eta) + \tilde{p}_N(b) + \text{stress tensor terms},$

Maria Kazakova

Defining $\tilde{\varphi}$ (enstrophy), \tilde{W} , and \tilde{P}

$$\tilde{\varphi} := \frac{1}{\tilde{h}^3} \int_{\tilde{b}}^{\tilde{\eta}} \tilde{u}'^2 d\tilde{z}, \ \tilde{W} = \frac{1}{\tilde{h}} \int_{\tilde{b}}^{\tilde{\eta}} \tilde{w} d\tilde{z}, \ \tilde{P} = \frac{1}{\tilde{h}} \int_{\tilde{b}}^{\tilde{\eta}} \tilde{p}_N d\tilde{z}$$

Model derivation: equations for P and φ

Energy equation
$$\xrightarrow{\int \frac{1}{2}} O(\mu^2)$$

 $\frac{h^2}{2} \left(\frac{\partial h\varphi}{\partial t} + \frac{\partial hU\varphi}{\partial x} \right) + \frac{\partial h\langle e_a \rangle}{\partial t} + \frac{\partial hU\langle e_a \rangle}{\partial x}$
 $= -h \langle P^r \rangle - \left(hP - 2\nu_T h \frac{\partial U}{\partial x} \right) \frac{\partial U}{\partial x} - 2 \left(P + 2\nu_T \frac{\partial U}{\partial x} \right) (W - \dot{b}),$

where e_a is the acoustic energy and P^r is a dissipative term.

Postulate $\langle e_a \rangle$ in (18) + decouple \longrightarrow equations for P and φ

$$\frac{1}{h}\int_{b}^{\eta}e_{a}dz = \langle e_{a}\rangle = \frac{P^{2}}{2a_{c}^{2}}$$

where a_c is the constant sound velocity

Under the mild slope condition (neglect some bottom terms with large order of μ)

$$\begin{aligned} \frac{\partial h}{\partial t} &+ \frac{\partial hU}{\partial x} = 0\\ \frac{\partial hU}{\partial t} &+ \frac{\partial}{\partial x} \left(hU^2 + \frac{gh^2}{2} + hP + h^3\varphi \right) = \frac{\partial}{\partial x} \left(2\nu_T h \frac{\partial U}{\partial x} \right) - gh \frac{\partial b}{\partial x}\\ \frac{\partial hW}{\partial t} &+ \frac{\partial hUW}{\partial x} = \frac{3}{2}P + 3\nu_T \frac{\partial U}{\partial x}\\ \frac{\partial hP}{\partial t} &+ \frac{\partial hUP}{\partial x} = -a_c^2 \left(h \frac{\partial U}{\partial x} + 2W \right)\\ \frac{\partial h\varphi}{\partial t} &+ \frac{\partial hU\varphi}{\partial x} = -\frac{2}{h} \langle P^r \rangle + \frac{4\nu_T}{h} \left(\frac{\partial U}{\partial x} \right)^2 - \frac{8\nu_T W}{h^2} \frac{\partial U}{\partial x} \end{aligned}$$

With no φ , $P = \frac{h\ddot{h}}{3}$ (SGN)
With φ , model of
MK&Richard, **2019**

Dispersion relation

The dispersion relation $\omega=\omega(k^2)$ satisfies

$$\frac{h_0^2}{3a_c^2}\omega^4 - \omega^2 \left[1 + \frac{h_0^2k^2}{3}\left(1 + \frac{gh_0}{a_c^2}\right)\right] + gh_0k^2 = 0$$

As $a_c \rightarrow \infty,$ the dispersion relation of our model approaches to that of SGN model

New breaking criteria

Second order accuracy:

- Finite volume MUSCL scheme in space
- IMEX scheme ARS2(2,2,2) in time

Breaking Waves Hyperbolic Model

Axe 1: Model derivation and validation on numerical test cases
Wave breaking and dispersion:
Hyperbolic model with enstrophy descsription
Breaking criterion:
Robust breaking criterion

Axe 2 :(Julien Chauchat, LEGI) Sediment transport coupling Resolution of Exner equation, nonlinear interaction

Validation:

Implementation with TOLOSA project tolosa-project.com Validation: Delft3D, XBeach

Hydro: experiences in LEGI (rip currents) + Mesurements by SHOM

Morpho: From solitary waves on sand beachs, monochromatic and bichromatic waves