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Introduction to the mathematical description of water waves 
 

Additional notes to the lecture course given at  
the Summer School in Cargèse (June 2023) 

 
by 

 
Prof. Robin Johnson 

 
Preamble 
 
The lectures will focus on the classical problem of inviscid water waves, and the 
application of asymptotic (parameter) methods to their study. To this end, we first 
describe the underlying assumptions that lead to the governing equations, and then a 
few simple, special problems are presented. These lay the foundations for a more 
extensive discussion of various flow problems of both practical and mathematical 
interest, which will be covered in the second half of the course. The overall aim is to 
show the complexity of flows associated with the theory of water-wave propagation, 
many of which can be accessed by invoking asymptotic methods. 
 
    These notes are to be read in conjunction with the lectures, the aim being to provide 
some additional information and background to the material described in the 
PowerPoint presentations. 
 
Lecture 1a: Governing equations, boundary conditions, non-dimensionalisation   
                     and scaling 
 
A fluid is a material that cannot, in general, withstand any force without change of 
shape. This property of a fluid should be compared with what happens to a solid: this 
can withstand a force, without any appreciable change of shape – until it fractures!  
 
    We work with water – a liquid – which is virtually incompressible: the density of 
water increases by about  under a pressure of 100 atmospheres. Water (and all 
conventional fluids) are viscous. However, in the context of water waves, the rôle of 
viscosity is weak; the length and time scales over which viscosity becomes important 
for water waves (moving in the oceans and rivers, for example) is typically very much 
greater than the scales on which the waves develop, evolve and interact. This 
observation is applicable even for turbulent flow, although then we must treat any 
background, established flow-field as being some appropriate (ensemble) average. It is 
observed, for example, that gravity waves (with wavelengths of tens of metres, or more) 
moving across the oceans, typically lose about 1/10th of their amplitude due to viscous 
action, in travelling 1000km. On the other hand, surface-tension waves (ripples), which 
are typically 1-2 cms in wavelength, decay appreciably in a minute or two. 
 
The continuum hypothesis: The first task is to introduce a suitable, general description 
of a fluid, and then to develop an appropriate (mathematical) representation of it. This 
involves regarding the body of fluid on the large (macroscopic) scale, i.e. consistent 
with the familiar observation that water appears to fill completely the region of space 
that it occupies: we ignore the existence of molecules and the ‘gaps’ between them 
(which would constitute a microscopic or molecular model). This crucial idealisation, 
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which regards the fluid as continuously distributed throughout a region of space, is 
called the continuum hypothesis. 
 
    On this basis, at every point (particle), we may define a set of functions that describe 
the properties of the fluid at that point: 
 

 – the velocity vector (a vector field) 
 – the pressure (a scalar field) 
 – the density (ditto), 

 
where  is the position vector (expressed here in rectangular Cartesian 
coordinates, but other coordinate systems may sometimes be required). Further, we will 
assume that our fluid is maintained at constant temperature. There will, however, be an 
exception to this when we examine a flow structure with a thermocline (Lecture 5b) 
where we have different constant temperatures above and below this line. In addition, 
we introduce the body-force vector, , defined per unit mass; for constant 
acceleration of gravity, this is . Here,  is time and we usually write 

. Note that both  and  are defined at a point, with no preferred 
orientation: they are isotropic. Further, these three functions are certainly to be 
continuous ( ) in both  and . Comment: applied mathematicians tend to allow 
the resulting governing equations to determine, after the event, the necessary 
requirements on the class of functions under consideration. (We see, therefore, that for 
an inviscid fluid we require  all to be of class ; for a viscous fluid, this 
has to be extended to include .) 
 
Streamlines: definition of a streamline is 
 

                                                  ( ).                                             

 
In Cartesian components, this is the set of three coupled, ordinary differential equations 

 (all at fixed ) 

or, more conveniently, a pair of equations, e.g. . [This is often 

expressed in the symmetric form .] Note that, in 2-space  , we 

simply have  (because there is no variation, and no flow, in the -direction). 

 
Particle path: this is the path, , followed by a point (particle) as it moves in 

the fluid with a given velocity, i.e. ; this is pure kinematics, providing a 

determination of  given . 
 
 
Note: A steady flow is one for which the velocity field is independent of time, and 
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then the families of streamlines and particle paths coincide, because 
 

 and  define the same families of curves. 

 
The kinematic condition: Points in a surface of the fluid – at the free surface or on the 
bottom – remain in that surface for all time (which is the appropriate condition to invoke 
in the absence of mixing). Let such a ( ) surface be , then points remain 

in the surface if S maintains the value 0 as the particles move; thus we require 

. This constitutes a necessary condition for the evolution of the surface. (An alternative 
derivation, which provides a sufficiency argument, is based on the observation that, 
because particles cannot cross the boundary, the normal velocity of the surface must 
equal the normal velocity of the particles (points) that sit in the surface.) For the free 
surface, represented by  (written in rectangular Cartesian 
coordinates), we then obtain the condition 
 

 

 
                                              
 
i.e.                               on .                                    
 
Subscripts here denote partial derivatives. On the bottom ( ) – which we take 
to be a fixed, rigid boundary – we have , and so the application of the 
kinematic condition (again, written in Cartesians) gives 
 

 on . 
N.B. Using  we can model undersea earthquakes (i.e. marine quakes). 
 
The dynamic condition: This prescribes the stresses at the free surface of the fluid. 
With zero viscosity, this becomes simply the normal stress (pressure) which we usually 
take to be the constant pressure of the atmosphere at the surface. 
 
Well-posedness: We seek a solution for  and  (which 
may be a finite or infinite domain, e.g. ,  for waves that 
propagate to infinity in a finite-width channel). Now an important and fundamental 
technical issue is the well-posedness of this problem. By this we mean that, at some 
non-zero time, , and given initial data at , then 
 

• a solution exists 
 

• the solution is unique 
 

• the solution depends continuously on the initial data. 
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It is well beyond our aims and remit in this applied mathematical course to discuss this 
aspect of the problem. Suffice it to report that, at least for irrotational flow, well-
posedness has been proved for suitably smooth initial data but, for general (rotational) 
flows, the question is still open. Of course, there is good evidence based on the 
applicability of the results, various familiar approximations to the equations and the 
large number of numerical studies, that we have a well-posed problem – hardly a 
rigorous proof! Nevertheless, it does give us some confidence that we do have a useful 
model for water waves, even if a suitable proof eludes us, at present. We proceed, in 
these presentations, on the assumption that we are working with a well-posed problem. 
Indeed, in terms of the connection to initial data, this is less critical: we obtain either 
steady solutions or determine the initial data, after the event, consistent with the solution 
constructed. 
 
The vorticity: An important property of a fluid flow, both in terms of what is observed 
in real flows and what is relevant in making theoretical headway, is the vorticity; this 
provides a measure of the local spin or rotation exhibited by fluid elements. It is defined 
by 

 
 
(i.e. , sometimes written  or ), and one simple 
observation follows directly. If the flow is restricted to motion and variation in only 2-
space –  say – then we see that 
 

: 

 
the vorticity possesses a component in only the third ( ) direction. (Note that this holds 
for unsteady flow.)  
 
    Now, it is observed that many real flows have almost zero vorticity almost 
everywhere. However, observations of some classes of water waves indicate that this 
is clearly not the situation; for example, waves breaking at a shoreline exhibit a highly 
turbulent mixing process (air is mixed with water), where vorticity plays a significant 
rȏle and, usually, the kinematic condition is disrupted. Nevertheless, the simplifications 
that zero vorticity provide are a good starting point in the study of water waves, and 
many types of waves do propagate in essentially tranquil conditions. (In recent years, 
there has been considerable interest in the development of rigorous theories of water 
waves which accommodate some – often quite general – vorticity in the flow field, but 
one that is geometrically simple, e.g. 2D and periodic.) If we accept that zero vorticity 
is a reasonable assumption, at least for a class of ‘ideal’ waves, then we may set 
. This is called – obviously – irrotational flow; then we have 
 
                                                                                      

 
for arbitrary  functions ; the function  is called the velocity potential 
(dimensional here). Flows with vorticity are often called rotational flows. If, in addition 
to the flow being irrotational, it is also incompressible (as we certainly have for water), 
then 
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                                                  and so :                                         
 
Laplace’s equation for . Consequently, if we are able to determine which 
satisfies Laplace’s equation and also satisfies the given boundary conditions, then 

 is known; Euler’s equation then gives, by direct integration, the pressure 
. 

 
The stream function: Important progress is afforded by the restriction to two spatial 
dimensions (  say – the conventional choice – or we might select  in the 
water-wave context), but the flow can be unsteady. For an incompressible flow, we 
have 
 

, 

 
using rectangular Cartesian components (but other systems are possible); let us 
introduce an arbitrary  such that 
 

                                                     and then  .                                          

 
Consider lines  where  plays the rȏle of a parameter; we assume 

that this relation defines , and then we form (all at fixed ) 
 

 i.e.  or . 

 
But this last statement is the definition, in two spatial dimensions, of the streamlines, 
defined at an instant in time. Thus lines , at fixed , are the 
streamlines; consequently, we call  the stream function (dimensional here). 
 
    Further, let us now suppose that this 2D flow is also irrotational, then we obtain 
 

. 

 
Thus  also satisfies Laplace’s equation (in 2D); cf. the result for the velocity 
potential. In summary, therefore, we have, for two-dimensional, incompressible, 
irrotational flow 
 

  and  , 
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which are the Cauchy-Riemann relations relating  and . Thus  such 
that  

 ( ), 
 

and then the techniques of complex analysis become available.  
 
    In the case of a 2D flow that is incompressible only – so not necessarily irrotational, 
but still unsteady – we have 

 
 where , 

 
which provides an equation for , given the vorticity in 2D. 
 
With surface tension: The nondimensional surface-kinematic-boundary-condition, 
with surface tension included (but approximated for small εδ), is 
 

  on  ,  

 

where , a Weber number, with  the surface-tension coefficient 

(force/unit length). This formulation is based on the property that the pressure jump 
across the surface, which possesses a surface tension, is proportional to the local 
Gaussian curvature. 
 
Lecture 1b: Energy equation and integrals of the motion, and two classical   
                     problems: one linear and one nonlinear  
 
Energy equation: The relevant vector identity is 
 

   (and  is the vorticity). 

 
Irrotational, steady flow: We then have 
 

 

 
and the constant here is the same constant everywhere; only for rotational flow is the 
constant different on different streamlines. 
 
Energy integral: Starting with 
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we dot each side with  (then ), set  and add 
 

(= 0 because the fluid is incompressible). 

Also add , which is zero, and multiply by  (= constant) to give 

 

; 

 

then separate by writing  and integrate from  to 

: 
 

  

 

. 

 
Introducing the boundary conditions on the bottom and at the surface, and interchanging 
the integral and differential operators (by invoking the technique of ‘differentiating 
under the integral sign’, sometimes referred to as Leibniz’s integral rule), gives, in 
general,   
 

 

, 

  
where  are the pressures at the surface and on the bottom, respectively. (We 
assume, throughout this process, that all the integrals exist.) But, for our water-wave 

model, we have  and, for constant atmospheric pressure at the free surface, we 

may define the surface pressure as relative to this pressure, so then . 
 
Classical linear problem: The equations for  are 
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Further, we see that                   

 

The resulting dispersion relation, without surface tension, is ; this, in 

general, describes a dispersive wave: the phase speed depends on the wave number. 
However, for long waves/shallow water ( ), we obtain   (non-

dispersive); for short waves/deep water ( ), we have  (dispersive). 
The energy in the wave, which is proportional to (amplitude)2, propagates at the group 
speed ; for gravity waves, this is 
 

  and so . 

 
    We can also find the leading approximation to the particle paths. Using our non-
dimensionalisation and scaling, the particle paths are given by 
 

; 
 

Relative to a fixed point, , we write  and so obtain 
 

; 

 
This produces the particle paths  
 

,  , 

 
describing different ellipses at different depths.  
 
Classical nonlinear system: We have  

 on characteristic lines ; 

 on characteristic lines . 

Example 1 ‘simple’ wave    
 
Consider propagation to the right into stationary water of constant depth, ; all the 

 characteristics emanate from the undisturbed region, so   where

 and . Thus  everywhere (so we have ‘simple waves’) 

and on the  characteristics, so u and c are each constant on , 
which are therefore the lines  with general solution 
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. 
 
Given the wave profile , then    
 

. 
Thus 
 

, 

 
and so  where , 

 
i.e. 

, .                            
 
This is an implicit equation for 

, given and ; if 
 for some x, then this 

solution produces a wave which 
‘breaks’, i.e. the characteristic lines 
cross after a certain finite time: the 
solution has become multi-valued. 
 
Example 2 ‘dam break’ problem 
 
At time t = 0, the dam is broken; we describe this by writing 
 

 everywhere and    all at t = 0, 

 
where  is a constant. Now the  characteristics emanate from  where 

 and , so  everywhere in the flow. But on  

characteristics, we have ; thus u, c and  are constant on  and 
so these are the lines  (since all pass through the (x, t)-origin). 
Thus we have  and ( ); so  
 

  and  , 

 

and then  which shows that the solution is defined in the 
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, , 

 
and then at the front, where , 
we have : the front 
moves into the zero conditions 
ahead at a speed . At the 

rear, where , we have 

: the top of the 
collapsing wall of water 
propagates backwards into the 
undisturbed conditions at the 
speed . 
  
 
 
Lecture 2a: The solitary wave and Gerstner’s exact solution 
 
The solitary wave dynamic boundary condition: We use the pressure equation to 
provide a suitable version of the surface dynamic (pressure) boundary condition. We 
evaluate 
 

 

 
on the free surface where  with  :   
 

   on  . 

 
Further, the flow is to be at rest at infinity ( ) , so  and 

, which gives 
 

; 

thus the dynamic boundary condition becomes 
 

  on  .  

 
A second integral relation: We start with Green’s theorem in the form 
 

2

0
1( , ) 2
9

xh x t h
t

æ ö= -ç ÷
è ø

0 02xh h
t

- £ £

0h =

02x h t=

02 h

0h h=

0x h t= -

0h

1 ( )
2

p g z f t
t
f

r
¢ ¢¶ ¢ ¢ ¢ ¢ ¢+ × + + =
¢ ¢¶

u u

( constant)ap P¢ ¢= = z h¢ ¢=

1 ( )
2

aP g h f t
t
f

r
¢¢¶ ¢ ¢ ¢ ¢ ¢+ × + + =

¢ ¢¶
u u ( , )z h t^¢ ¢ ¢ ¢= x

¢̂ ®¥x constantf¢®

0 ( constant)h h¢ ¢® =

0 ( )aP g h f t
r
¢

¢ ¢ ¢+ =
¢

( )0
1 0
2

g h h
t
f¢¶ ¢ ¢ ¢ ¢ ¢+ × + - =
¢¶

u u ( , )z h t^¢ ¢ ¢ ¢= x



11 
 

, 

 
applied per unit length in the y-
direction, so we have  and 

. Choose  

and , together with the 

plane region which is bounded by the 
curve Γ: 
 

, 

 
which is shown in the figure.  Now  
 

, 

 
and so Green’s theorem becomes 
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, 

where  denotes evaluation on ; for , this is readily estimated to 
produce 
 

, 

 
and so (A) can be written (for finite and then imposing ) as 
 

   or   (McCowan, 1891). 
 

There is one other important relation, due to Longuet-Higgins (1974): 
 

. 
 

The Gerstner wave: The velocity components are 
 

, 

 
which confirms that the motion decays with depth (corresponding to ). The 

wave speed is , and with wavelength  this gives  which 

is the wave speed for deep-water waves in irrotational flow. 
 
    The pressure is obtained by direct integration, to produce 
 

, 

 
which is constant on particles (i.e. fixed b) as they move. The surface kinematic 
condition, requiring that points of the free surface remain in the surface, corresponds to 
a specific value of b, namely .  
 

    The Jacobian becomes , and for  we 

require  for otherwise J will pass through zero. The special case  
corresponds to a degenerate form of the surface wave – a cusped wave. 
 
    The vorticity is 
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, 

 
which shows that the Gerstner-wave flow is rotational, with a vorticity which decays 
with depth ( ). For the cusped wave ( ), the vorticity is singular at the 
surface (which is where ).  
 
Lecture 2b: Introduction to parameter asymptotics: ideas and method 
 
Here is another example which contains the important ingredient often encountered in 
the solution of some differential equations: an exponentially small term. 

We consider  for  and  then, for arbitrary fixed  

x > 0, with , we see that 
 

, 
 
and any number of terms could be included here (based on the sequence ), 

although there will still be an overall error generated by the exponentially small term. 
However, we observe that 
 

 and that  as , 

 
neither of which can be recovered from our original asymptotic expansion. This 
expansion is therefore not uniformly valid: there is a breakdown for sufficiently small 
x, and also for sufficiently large x. To proceed, we must rescale x: for small x we set 

 to give 

 

 
and then, for fixed X as , we obtain 
 

, 

 
which does recover the correct behaviour on , i.e. on .  
 
Correspondingly, for large x, we introduce : 
 

, 

 
and so, for fixed χ (> 0 because x is large) as , this gives 
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, 

 
which produces the correct behaviour as , i.e. as .  
 
    In this example, the given function (in the specified domain) requires three different 
asymptotic expansions in order to cover the whole domain, associated with three 
different sizes of x: ,  and . Furthermore, we see that the 
original expansion includes its own region of validity (if we think of including the 
exponentially small terms): these become O(1) where  and, furthermore, the 
correction term explicitly written down here (namely ) becomes O(1) where 

, the same size as the first term.   
 
    Usually, it is altogether straightforward to find asymptotic expansions of given 
functions which contain a parameter. However, their most powerful use is in the 
construction of solutions of differential equations. Obviously we do not know the 
function – that is what we are seeking – and we do not even have an asymptotic 
sequence. The procedure, guided by the appearance of the (small) parameter in the 
equation(s), is to assume a suitable asymptotic sequence, represent the solution on this 
basis and then solve the set of problems (presumably reduced versions of the original 
equations) that arise at each order. If the solution can be found, to all orders if possible, 
it may be examined for validity in the given domain of the solution, rescaling as 
necessary and repeating the process. On occasions, the scalings associated with 
different regions can be deduced directly from the differential equation(s). 
 
    This technique is much used in the investigation of problems in fluid dynamics – 
indeed, it was first developed to deal with complex fluid flows, boundary layers in 
particular – and we will spend the rest of the course looking at some specific, but 
important, flows. These will demonstrate how this approach can be used to extract fine 
detail (and aid understanding) when we do not have exact solutions and, at best, we 
may have only a proof of existence (which is always most gratifying!). Essentially, the 
procedure of non-dimensionalisation and scaling, using a suitable parameter, identifies 
specific properties in the system of equations and then extracts them at each order. 
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