
Lecture 5b

The Pacific Equatorial 
Undercurrent (EUC) and  

associated waves

Pacific Ocean in the neighbourhood 
of the Equator: schematic
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Background

wind-driven surface waves, underwater currents, 
upwelling and downwelling, 
and thermal, density and salinity stratification 
…….and much more; so, for example,

all these can change on both long and short timescales, 
vary with the seasons….and they are affected by the 
climate and by climate change.

Oceanic flows involve
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Many ad hoc models have been used to describe 
specific phenomena; we approach the analysis of one 
particular flow by treating it as a problem in classical 
mathematical fluid dynamics (some details omitted).

Some information about 
the EUC:

Data for the temperature 
variation along the Pacific 
Equator.
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Schematic of the flow 
in the neighbourhood 
of the Pacific Equator.



We consider flow in the vertical plane at the Pacific 
Equator, written in rotating, spherical coordinates (but 
approximated locally); in nondimensional variables we have 
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The parameter ε measures the amplitude of 
the wave (relative to the average depth of the 
undisturbed thermocline,                  ); the 
background flow (with w = 0) satisfies
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where ρ = 1 above the thermocline, and ρ = 1 + r below. 

The parameter                        provides the contribution 
from the rotation of the Earth: the Coriolis term.
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We choose a background flow to represent the EUC.
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Plan: expand for small ε, using Taylor expansions for 
the boundary conditions, and find the dispersion 
relation for the waves. THEN consider nonlinearity.



The background flow which models the 
observed EUC (simply) is

, 0 1
1

, 1 1
( )

, 1
1

0,

V WV z z

W z m
U z

z nW m z n
n m

n z d

ì +æ ö- - ³ > - +ç ÷ï -è øï
- + ³ > - -ï

= í
+æ öï - - ³ > -ç ÷ï - -è ø

ï
- ³ ³ -î

!
!
!

7

Typical values are

0 014, 0 029, 0 33, 2, 33,V W m n d= × = × = = × = =!

based on the speed scale          and the average depth of 
the undisturbed thermocline,    .  

g h¢ ¢
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The linearised problem becomes
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The linear problem involves finding the 
solution in  5 regions:

A lengthy and tedious calculation, but quite 
straightforward, seeking a harmonic-wave solution 
with wave number k.
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We do not reproduce the calculation here – details in 
the reading list – we will simply quote a few results. 

The dispersion relation, for arbitrary k, can 
be found; we are interested only in long 
waves:           ; these come in two variants.0k®

1. Intermediate long waves

These are defined by                         , i.e. long with 
respect to the depth scale    , but short relative to 
the depth of the ocean. We find that 

0,k kd® ®¥
h¢

31 1~ (1 )( ), ~ ( ) ( ) .
2

c r W V W c W V W V W
r
-æ ö± + - - + - + + +ç ÷

è ø
!

! !

Typical values are
1 1 12 7ms (eastwards),1 7ms (westwards), 0 55ms (eastwards);c - - -» × × ×

(respectively)
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corresponding observed values are
1 1 12 5ms , 0 5ms , 0 55ms ,c - - -» × × × but the second is for very long waves 

– see later – and the third turns out 

to be a critical speed.



In addition, the ratio of amplitudes gives
surface wave ~

thermocline wave
r-

so a large wave on the thermocline is virtually invisible 
at the surface. N.B. Out of phase.

2. Very long waves

These are defined by                         , i.e. long with 
respect to the depth of the ocean. We find that 
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Typical/observed values are
1 1 11 9 /1 7ms , 0 11/ 0 12ms , 0 51/ 0 5ms ,c - - -» × × × × × × respectively, for the 

first three;
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last two:                      

– tsunami waves
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Nonlinearity: critical levels

Critical levels can appear in Region I and/or Region IV.
Observations confirm that large eddies, with closed 
streamlines, can occur in the neighbourhood of the 
thermocline (most often in the western Pacific).

We use our equations to obtain the structure of the flow 
in these critical layers; we consider Region I only, i.e. 
for the constant wave speed c:                    .V c W- < <
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For steady waves travelling at the speed c (satisfying the 
above), we introduce                  and use the explicit form 
of the background velocity profile appropriate for this 
region; the equations are therefore 

x ctx = -
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For the flow outside the critical layer, and a wave with 
wave number k, the stream function can be written as
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then at leading order we get
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This must match to the solution valid outside 
the critical layer; this gives
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and then the streamlines in the critical layer are 
described by
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which recovers the classical Kelvin cats’-eyes pattern; 
see Lecture 4a. 
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Comment: another approach enables the scales to be 
identified which give rise to the Korteweg-de Vries 
equation for nonlinear waves, but the resulting analysis 
– because of the detailed background state – is very 
involved.

We have seen that our asymptotic approach 
can be extended to encompass very complicated 
flows; here, in particular, we have

a well-defined, i.e. based on a precise asymptotic limit, 
linear problem which can be solved in detail and for a 
general wave number (with gratifyingly good 
agreement with the observed wave speeds);

the asymptotic approach allows the extension, precisely 
defined, to incorporate nonlinearity (to describe the 
critical layer);
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higher-order terms are accessible, and application to 
nonlinear wave propagation is possible (but messy!).



End of 
Lecture 5b


