
Lecture 5a

Periodic water waves in the 
presence of constant vorticity

Background
Existence of inviscid, periodic water waves with vorticity 
over finite depth has been proved. In particular

waves are symmetric;

in some cases, the waves take extreme forms, i.e. 
included angle at the crest;

for negative vorticity, any stagnation point is at the 
crest;

for positive vorticity, any stagnation point is on the 
bottom, directly below the crest;
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horizontal velocity component below the surface is 
strictly monotone. 



All these are important, general observations 
which have been confirmed by a number of 
numerical solutions. 

We will use asymptotic methods to extract some 
analytical detail about the solutions – an example of 
the power of these methods.

To use this approach we need a suitable small/large 
parameter; various possibilities are available, e.g. 
very large of very small vorticity, which may be 

associated with the size of the wave.
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Here we introduce an amplitude parameter, for fixed 
constant vorticity.

Governing equations
Model (the classical one) based on inviscid, incompressible 
fluid, in the absence of surface tension and with constant 
pressure at the free surface:
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written in nondimensional variables, where p is the 
deviation from the hydrostatic pressure distribution.



We consider one-dimensional, periodic waves 
over constant vorticity (in a formulation which 
follows Constantin & Strauss).

Let the speed of propagation of steady waves be c, 
and introduce X = x – ct and U = u – c; then we have
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Equivalently, at the surface, we have Bernoulli’s 
equation:
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Introduce the stream function
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and write the total mass flux, in this moving frame, as

Now use the Dubreil-Jacotin transformation, by writing
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Seek a solution in 00 ,p Xy p p£ £ - £ £
(periodic, where the actual period is determined by 
the length scale used in the non-dimensionalisation).

Convenient to rescale: ,D d Q qw w= =

to give 3 2 22 2 2 2
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Can examine various problem: e.g. fixed ω, with a 
small-wave perturbation; or let                . w® ±¥
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We choose to examine small-amplitude (i.e. 
linear) waves with fixed, positive vorticity.

So we start with the exact solution representing a 
uniform flow:
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Introduce a (wave) perturbation of this background flow, 
with amplitude measured by ε: 
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A solution for       which satisfies the bottom boundary 
condition is     
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and the top condition is satisfied if Real solutions 
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This asymptotic expansion for d breaks down near the 
bottom where                          and then 2
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and then d = O(ε), so we write                          to 
describe the problem valid near the bottom of the flow.
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In summary, we have the asymptotic solution
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This admits solution with a stagnation point (on the bed, 
under the crest) if 1 .l w=
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Thus we obtain

plus matching condition for             , i.e. away from the 
bottom. 
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The resulting leading-order solution, satisfying the 
matching condition, is
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An example of the 
stream lines for 
small-amplitude 
waves based on the 
asymptotic solution.

The corresponding horizontal 
velocity component below the 
crest (in the moving frame). 
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This example shows how the use of (formal) 
parameter expansions can extract analytical 
details of a complicated flow. In particular:

the asymptotic structure is fairly simple, but contains 
a non-uniformity leading to a breakdown (near the 
bottom of the flow field) and consequent rescaling;

the solution near the bottom has been found, requiring 
matching to be invoked;

the solution confirms the general structure implied by 
the proven results, with additional fine detail evident. 
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N.B. Other cases can also be examined, e.g. large 
(constant) vorticity and variable vorticity. 

End of 
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