
Lecture 4b

Edge waves over variable depth

First, we show some examples of edge waves 
and then we briefly outline the classical edge-
wave theory.

Comment: The Gerstner solution can be transformed 
to give an exact solution for edge waves, but for a 
linearly increasing depth (to infinity). Then…

2

this provides a scaling that can be used to develop an 
asymptotic  theory for nonlinear edge waves over a 
variable depth (which therefore accommodates 
realistic bottom profiles away from the shoreline).



Some examples of edge waves:

A beach in Mexico

Alum Bay, Isle of Wight
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Another example:

4

A beach in 
South Africa



Model and Formulation:

Non-dimensionalise using a typical wave length,    , 
and introduce        for speed and            for time;              

!
g! g! !

then write pressure as .aP g z g pr r- + !
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Surface wave:
( , , )z h x y t=

Variable bottom:
( )z b x=

Longshore coordinate: y Seawards: x®¥

The governing equations take the familiar 
form, but now with the longshore coordinate 
(y) included. We have

with boundary conditions:

p h w u v h z h
t x y

æ ö¶ ¶ ¶
= = + + =ç ÷¶ ¶ ¶è ø

& on

and
d ( )
d
bw u z b x
x

= =on
(together with suitable initial data, chosen to be consistent with 
the solution that we develop). 6

( , , ) , , ;u v w u v w p
t x y z x y z

æ ö æ ö¶ ¶ ¶ ¶ ¶ ¶ ¶
+ + + = -ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø
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x y z
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Classical (Stokes) theory (1846):
Invoke the approximation:

v small amplitude

v long waves (but not essential)

then we obtain

; ; 0 ; 0u p v p p u v w
t x t y z x y z
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

= - = - = + + =
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

with ,
d0
d

h bp h w z w u z b
t x
¶

= = = = =
¶

& on and on

where we set ( ) ( 0, constant).b x xa a= - >
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then the equation for A(x) becomes
2

2 2
2

d d 0.
dd

A Ax A A
xx

a a w
æ ö

- + + =ç ÷ç ÷
è ø

!

Seek a solution
h A x E p P x z E u v w U V W x z E= = =( ) ; ( , ) ; ( , , ) ( , , )( , )

{ }( )exp i( )E y tw= -!

Write in terms of L(Y): to give( ) e ( ), 2xA x L Y Y x-= =! !

YL Y L L¢¢ + - ¢ + = = -( ) , ,1 0 11
2

2g g w a !e j
which has bounded solutions for A(x), as , only if x® +¥

( 0,1, 2, ...);n ng = =
these are the Laguerre polynomials, .( )nL Y
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The dispersion relation is then: 2 (1 2 ),nw a= +!

and so there are no waves if 0.a =



We now introduce a slowly varying depth, 
as follows:

Set                    and consider the problem withd (0)
d
b
x

e = -

( ) .b B X X xe= - =with
From the transformation of the Gerstner solution, we 
see that the relevant scaling is

( , , ) ( , , ) ; ( , ) ( , ),u v w u v w p h p h® ®e e e

with , 1

0
; ( ; )d

X
y t X Xx w e q e a e- ¢ ¢= - = ò!

together with X, of course.  
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Note that we describe a travelling wave here.

The equations then become the following:

D D D; ; .
D D D
u p p v p w p
t X t t z

a e e
q x
¶ ¶ ¶ ¶æ ö= - + = - = -ç ÷¶ ¶ ¶ ¶è ø

!

Euler’s equation (components)

Mass conservation 0.u v u w
X z

a e
q x
¶ ¶ ¶ ¶æ ö+ + + =ç ÷¶ ¶ ¶ ¶è ø
!

We have written 
D .
D

u v u w
t X z

w a e
x q x

æ ö¶ ¶ ¶ ¶ ¶
º - + + + +ç ÷¶ ¶ ¶ ¶ ¶è ø

!
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Boundary conditions
h h h hp h w u v u z h

X
w a e e

x q x
¶ ¶ ¶ ¶

= = - + + + =
¶ ¶ ¶ ¶

& on!

d ( ).
d
Bw u z B X
X

= - = -onand



We seek an asymptotic solution in the usual 
fashion giving, at leading order,

0 0 0 0
0 0 0 0 ;u u u pu vw a a

x q x q
¶ ¶ ¶ ¶

- + + = -
¶ ¶ ¶ ¶

!

0 0 0 0
0 0 0 ;v v v pu vw a

x q x x
¶ ¶ ¶ ¶

- + + = -
¶ ¶ ¶ ¶

! ! 0 0 0
00 ; 0,p u v

z
a

q x
¶ ¶ ¶

= + =
¶ ¶ ¶

!

with 0 0 0.p h z= =on
N.B. We have expanded the surface boundary conditions about 
z = 0; also note that w does not appear at this order.
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0 0 0 0e sin ; e cos ;u A v Aq qx x
w w

= - =
! !

p h A A0 0 0
2

2 0
2 21

2
= = -e eq qx

w
cos ,!

0 0with and for ( ), both arbitrary.A Xa w= -!

This nonlinear system has the exact solution

At the next order we impose the condition 
which ensures that the asymptotic expansion 
is uniformly valid as             ; this requires q ®¥

2
0

0 0
dd 2

d d
ABA B A

X X
w

+ =
!

and so
2

0
1 d( ) exp .

( )( )

X XA X
B XB X

wì ü¢ï ï= í ý¢ï ïî þ
ò!

The free surface is then given by

h X A A h( , , ; ) ~ cosq x e x
w

eq q
0

2

2 0
2 2

1
2

e e- +
!

and the beach is represented by                 as               
which gives

( ) ~B X X 0X ®

( )21
0 2( ) ~ , 1 as 0.A X kX Xb b wé ù= - ®ê úë û

!
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If            and all its derivatives are to exist as          then             0( )A X 0X ®
nb = 2

i.e. 1 2 ( 0,1, 2, ...)n nw
= + =

!
– the classical result.



This is given by the intersection of the surface wave with 
the bottom profile i.e.                        .( )z B X he= - =

At the beach                , so we have( ) ~B X X

- -x A A~ cos .0
2

2 0
2 2

2
e eq qx

w
!

, we take the run-up 
pattern to be described by the normalised form

X x nq e b= - = - =With and! !

1
2 1 2

01
2

2 1 2+ -
+

=- - - -µ x µZ
n
Zn Z n Ze ecos

( )
1, ( 1, 2, ...) 0.n nZ x k n Zµ e -= = = ¹where and! !

13

N.B. Uniformity & convergence as              require 
finite             so n = 1, 2, 3, … . [n = 0 is a special case.]2

0A B
0X ®

We can now find the run-up pattern of the waves.

N.B. Continuous, bounded, periodic solutions exist for

1 2 30 [ 7 27; 5 87; 2 67].nµ µ µ µ µ³ > » × » × » ×

Example:
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sea
wards

longshore direction 4, 4n µ= =Example plotted for                    .

blue = sea

orange = 
sand/beach 



End of

Lecture 4b


