
Lecture 4a

Asymptotic theory for the 
appearance of ‘cat’s-eyes’ and of 

critical levels

Preamble:
These last few lectures present asymptotic results for a few 
important properties associated with the propagation of water-
waves. The aim is to show how this approach can extract the 
detailed structure of complicated flows, as well as showing how 
diverse can be the motion under the umbrella of ‘water waves’.

We start by picking up one of the flows described in the previous 
lecture: water waves in the presence of vorticity (i.e. waves over a 
‘shear’ flow). In particular, we will address two important issues:

1. Can we have flows which initially have no cat’s-
eyes, which then appear at later times?
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2. Can we have flows which initially have no critical 
level, which then appears at a later time?



Kelvin’s cat’s-eyes (1880)

Lord Kelvin (W. Thomson) was the first to describe the 
closed streamlines that appear under a surface wave 
which moves at the same speed as the flow below it, at a 
particular level:
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An example of classical cat’s-eyes, drawn in the frame 
moving with the periodic surface wave.

Formulation:

For inviscid, but rotational, flow, the thickness of the 
critical layer is             with the surface wave                 ;    ( )O e 1z eh= +

cz z Ze- =introduce                         , where the Burns condition 
gives the critical level at                               .  (0 1)c cz z z= < <

The solution requires a number of matched, asymptotic 
regions:
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outside the critical layer, above 
and below; inside the critical 
layer, either side of the 
separating streamline SS (across 
which a jump in vorticity is 
required at           ).( )O e



In the outer regions we have
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For the critical layer, we define
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where                              and the prime denotes the 
derivative. 

( )ˆ cU U z Ze= +
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Note that there are no boundary conditions here; these 
are replaced by matching conditions to the outer flow.



The development is lengthy and tiresome; 
we provide an outline of the main results.

The outer solution, at leading order, gives the Burns 
condition in the form
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For monotonic profiles,                               , there is 
always one solution                and one solution  

(0) ( ) (1)U U z U£ £
(0)c U< (1).c U>

If, in addition, we have
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(choices that model realistic velocity profiles), then 
there is just one critical level: ( ) , 0 1.c cU z c z= < <
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At O(ε), the solution which matches across the critical 
layer gives 3

0 0 0
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h
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KdV as before, but the coefficients now evaluated as 
finite parts of the corresponding integrals.



The streamlines in the critical layer are given 
by
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and then the evolution of the surface wave from one 
with a single peak to n-solitons produces (n – 1) 
cat’s-eyes within the critical layer.
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So we start with 
this scenario

The two-soliton solution of the KdV equation 
then gives

A cat’s-eye 
appears
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and evolves



Appearance of critical levels
The existence of steady, periodic waves (in 2D), with 
given vorticity, mass flow rate and the total energy, has 
been proved, and some properties determined. 
With suitable choices of the parameters measuring the 
strength of the vorticity, the mass flow rate and the total 
energy, critical layers can be present.

For fixed parameters then either there is, or there is not, 
a critical layer in the flow.
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If we can change one (or more) of these physical 
properties of the flow, then a critical layer may appear, 
where previously one did not exist. 

We cannot, in a realistic model of the (inviscid) 
flow, change the vorticity or the mass flow rate, 
but we can (reasonably) change the total energy . 

In particular we choose to control the atmospheric 
pressure at the free surface, which mimics the passage 
of a low-pressure region (e.g. typical of storms at sea). 
This requires the choice of the pressure variation at 
the surface and its movement (i.e speed in 1D).
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So we choose to do this, keeping the mass flow rate and 
vorticity fixed; this is accomplished by

adjusting the conditions at the surface.



We start with our familiar equations for 1D 
wave propagation:

The surface is z = 1 + εη(x, t; ε) and p is the deviation 
away from the hydrostatic pressure distribution.
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Then P(x, t; ε) is the chosen pressure variation.
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and w = 0     on z = 0. 

We move directly to the far-field, by 
introducing a suitable frame moving with 
the wave, and a corresponding timescale:
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where c(τ; ε) is the (variable) speed of the wave.

In this far-field, based on ε, the relevant solution is 
obtained by transforming according to

( , ; ), , , .u z u w w p p P Pg e x t e e e e® - + ® ® ®
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We have chosen the vorticity, , to be a 
constant.
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The problem is now described by

p Ph= +

1z eh= +

with                &                             

and                     w = 0  on  z = 0.
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We seek a solution in

In detail, our model is as follows:

An observation: there are three wave 
components, with speeds c1 > (– γz)max and c2 < 
(– γz)min, and c; we select c so that, initially, it is 
between c1, c2, and in particular between the 
corresponding max/min values. (We allow 
both γ > 0 and γ < 0.)

We assume initial data, in the near-field, that is on 
compact support (for x = O(1)), then in the far-field 
there will be three well-separated components –
and we follow only the one moving at speed c. 
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Consistent with the equations (and the observations 
above), we consider the two problems given by:          
c = εC(τ), c = – γ + εC(τ), but give the details only for 
the former.



Model with c = εC(τ)
This choice requires p = O(ε), so we further transform

p pe®

and then seek an asymptotic solution in the usual form
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( , )P Cx t ¥Î 0[0, ].t tÎ0c CÎgiven and          ; valid for

Solution at leading order is

0 0 0; ; , with ( 0);P u P w zP Pxh g g= - = - = - > 2 31
0 1 3 (1 )p z Pxxh g= - -

31
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2 2 21 1
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and correspondingly for the other functions at this order.

N.B. We do not require these higher-order terms in order to give 
the dominant description of the solution. 
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~u c C z Pe g e g- - - -Thus we have

and so the critical level (u – c = 0) is given by

~ ( ) .z P Ce g- -



Consider (– P) with a single peak (– P)max at ξ = 0 
– so a region of low pressure, which otherwise 
decays as             ; we take γ > 0 and allow the 
pressure distribution to move with decreasing 
speed, C(τ). We see that

x ® ¥

m a x( ) ( )C Pt g> - no critical level

m a x( ) ( )C Pt g= - stagnation point on bottom directly 
below the peak

m a x0 ( ) ( )C Pt g< < - critical level in the flow

( ) 0C t <
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critical level extends to infinity

Furthermore, at leading order, the streamlines are 
given by

which we include in the description of the flow field.

( 2 ) constant ( ),Z Z P z Ze+ = =

(a) Stagnation point appears
(b) Critical level appears (and 

a streamline is included)
(c) Critical level extends to 

infinity
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There is a similar result for γ < 0, and also 
for the appearance of a critical level near the 
surface with                                            ( ).c Cg e t= - +

~z z Py g eg- - and so



End of 

Lecture 4a


