
Lecture 3b

The KdV equation for variable 
depth and in a flow with  

background vorticity

In this lecture, we show how standard 
asymptotic methods can be used to develop a 
theory for the KdV equation within a more 
realistic scenario. We examine two cases.   

1. Variable depth
In general, this is an important type of problem in 
water-wave theory, both for river flows and for ocean 
waves (in the neighbourhood of shorelines).
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The simplest problem that is associated with our 
weakly nonlinear, dispersive waves, is that generated 
by a KdV-type propagation over variable depth.



The scale on which the depth varies gives rise to 
different asymptotic approximations – and this usually 
produces a very involved structure, often requiring the 
consideration of many terms in the asymptotic 
expansions (and, typically, the resulting equation is 
NOT completely integrable). In general, both 
transmitted and reflected waves must be included, 
starting from the general governing equations.
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In this example of variable depth, we start with the 
governing equations (as used in the previous lecture for 
one-dimensional wave propagation with δ scaled out), 
but now rewritten to accommodate a variable bottom 
profile, and develop the relevant KdV equation.
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Write                       and then we consider the 
different scales on which the depth might vary. 
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O(1)a =and              i.e. α fixed as ε varies – the mathematically 

most difficult case.

The various cases are summarised by

The mathematically most interesting case, in the context 
that we are exploring here (KdV-type problems), is
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where k(X) accommodates the expected variable 
speed over the varying depth. (We consider right-
running waves.)
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Written in our new variables, we have
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We seek an asymptotic solution in ε, following 
the same pattern as before; at leading order 
we obtain
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and then the kinematic condition is satisfied for 
arbitrary              if 0( , )Xh x
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D(X) is the local depth of the water; for D = 1, we 
recover ξ = x – t.
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At the next order we obtain the KdV equation 
for variable depth:

With D = 1, so the bottom is flat and horizontal (B = 0), 
we recover our standard KdV equation.
In general, this new version of the KdV equation is not 
a completely integrable equation. However, it has been 
shown, both analytically in special cases, and 
numerically, that a reduction of depth leads to the 
appearance (‘fission’) of solitons.
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Finally, we observe that writing
with                        leads to the cKdV equation for H.



An example of ‘soliton fission’:

For the variable-depth KdV equation, in the case of a 
rapid change in depth (the details requiring a further 
asymptotic analysis), we find that a depth D = 1 which 
reduces to a depth                  

generates an n-soliton solution along the shelf.
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This is a 3-soliton 
example:

In order to initiate this discussion, we therefore require 
the appropriate governing equations that are rewritten 
to include some (background) vorticity.
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Thus, for one-dimensional wave propagation, we 
replace

by
where U(z) is given; this is the underlying ‘shear’ flow. 
The vorticity here is              (perpendicular to the      
(x, z)-plane); this is O(1) in this formulation.

d dU z

A more realistic model for water waves arises when we 
allow the water to be in motion, and the wave 
superimposed on that motion. This is often referred to 
as ‘waves over a shear flow’.

2. Waves in the presence of vorticity



The governing equations, with background 
vorticity and over a flat, horizontal bed, are
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and                       w = 0  on  z = 0.
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We now move directly to suitable far-field 
variables: , .x ct tx t e= - =

p h=
1z eh= +

This gives
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and                     w = 0  on  z = 0.
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We seek an asymptotic solution, in ε, exactly 
as we have  developed in our earlier work. At 
leading order we obtain

13

0 0;p h= 0
0 2( ( ) ) ;w U z c I h

x
¶

= -
¶

[ ]0 0 2
d ( ) ,
d

u U c I
z

h= - -

This set has the solution, for arbitrary             :
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At the next order, we obtain the KdV equation which 
describes propagation over an arbitrary ‘shear’ flow:
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in the absence of critical layers; if a critical layer is 
present, then closed streamlines (cat’s-eyes) appear.

The kinematic condition determines c in the 
form                                      

which is
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Example: choose the simple case ( )U z zg=

(where γ is a constant – so constant vorticity – usually 
called ‘linear shear’).
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Then the Burns condition gives

(and no critical layers exist for this background flow).
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The KdV equation becomes

Example of a solution: the solitary wave
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KdV solitary wave for constant vorticity: middle profile 
is γ = 0 (irrotational flow); outer (broader) profile is for 
γ = 1, upstream propagation; inner (narrower) profile is 
for γ = 1, downstream propagation.



End of 
Lecture 3b


