
Lecture 3a
The Korteweg-de Vries (KdV) 

equation for water waves, 
and related equations 

Formulation
Consider small-amplitude, one-dimensional, long waves 
(that decay at infinity); there is no natural horizontal 
scale, so we use the form of the governing equations 
with δ scaled out (see Lecture 1a):
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where we have made the simplest choice: the bottom is 
0.z b= =



Asymptotic solution
We seek a formal asymptotic solution as an expansion 
in ε, written as
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where q (and correspondingly      ) represent each of (u, 
w, p, η), although for η we omit the dependence on z.
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We assume, in a reformulation of the surface boundary 
conditions, that the problem for                      can be 
mapped (using Taylor expansions) to .  
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This is readily confirmed because the underlying problem 
is polynomial in z.

The problem therefore can be written as
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Note: we have retained as many terms as appropriate in the Taylor expansions 
that are used in the boundary conditions.



At leading order (in ε) we find that 
satisfies 
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Thus the asymptotic expansion for η takes the form
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which is not uniformly valid as t increases; provided 
that we have sufficiently smooth initial data, there is 
no other non-uniformity. However, this solution is 
valid only for t = O(1) – the near field.

and at the next order we have 1 0 0) )th h h= +F ( G (
where F and G are  functionals (involving derivatives), 
provided that .40 Ch Î

The far field is defined by times t = O(      ), 
so we introduce             and consider right-
running waves by using                .
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Thus we transform to far-field coordinates, to give
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The asymptotic structure follows the earlier 
pattern, but now written in (ξ, τ)-variables;
we obtain
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and for arbitrary               at this order; here, we have 
selected that solution for which all perturbations vanish 
if there is no wave present.
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At the next order we find that ( )
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which satisfies the bottom boundary condition.

In summary we have, for example,
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Finally, the kinematic condition at the surface gives 
the equation for              , with               arbitrary at this 
order; we have    
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the Korteweg-de Vries equation.



N.B. All higher-order equations describing 
the surface profile are linear.

The asymptotic expansion is uniformly valid for ,t ® ¥
for bounded and suitably smooth initial data.
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The KdV equation is the archetypal equation for the 
development of ‘soliton’/inverse scattering theory. 

Indeed, rigorous developments based on this approach 
have demonstrated that the KdV equation constitutes a 
proper approximation to the problem, for                 , 
and for times                 , for some fixed     , independent 
of ε.  
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Soliton theory for the KdV equation: 
a very brief overview
Treat the unknown function – a solution of the KdV 
equation – as the time-dependent potential of a one-
dimensional, linear scattering problem. The associated 
inverse scattering problem, with time evolution 
consistent with the KdV equation, can be solved to 
recover a solution of this equation.
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The solitary-wave solution is given by writing
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the two-soliton solution is obtained from
1 2 3
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Other soliton equations arising from 
the classical water-wave problem
Making suitable choices of coordinates and scalings, 
we can obtain:
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2D KdV/KP:
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cylindrical/
concentric KdV:
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and there are equations that are close to 
being soliton equations:
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which possesses a general 2-soliton solution, but only special 
N-soliton solutions.
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nearly-concentric KdV

which is integrable for initial data which decays rapidly at infinity

Furthermore, there is the Nonlinear 
Schrödinger (NLS) family of equations, 
starting with
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and the Camassa-Holm (CH) family, starting with
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An important and extensive description of water 
waves can be developed following the ‘soliton’ route –
but we now take a different direction in these lectures.



End of 
Lecture 3a


