Lecture 3a

The Korteweg-de Vries (KdV)
equation for water waves,
and related equations

Formulation

Consider small-amplitude, one-dimensional, long waves
(that decay at infinity); there is no natural horizontal
scale, so we use the form of the governing equations
with 0 scaled out (see Lecture 1a):
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and w=0 on z=0,

where we have made the simplest choice: the bottom is
z=b=0.




Asymptotic solution

We seek a formal asymptotic solution as an expansion
in &, written as

q(x,z,t;6)~ ) £"q,(x,2,0), €0,
n=0
where ¢ (and correspondingly 9, ) represent each of (u,
w, p, 1), although for # we omit the dependence on z.

We assume, in a reformulation of the surface boundary
conditions, that the problem for z<[0,1+£7] can be
mapped (using Taylor expansions) to z €[0,1].

This is readily confirmed because the underlying problem
is polynomial in z.

The problem therefore can be written as
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and w=0 on z=0.

Note: we have retained as many terms as appropriate in the Taylor expansions

that are used in the boundary conditions.
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At leading order (in &) we find that 77 (x,?)
satisfies
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where I and @ are functionals (involving derivatives),
provided that 775 € C y

Thus the asymptotic expansion for # takes the form

n~no(x,t)+e{Z (1y)+1G (7))}

which is not uniformly valid as 7 increases; provided
that we have sufficiently smooth initial data, there is
no other non-uniformity. However, this solution is
valid only for £ = O(1) — the near field.
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The far field is defined by times = O(s ),

so we introduce 7 = gfand consider right-
running waves by using & = x —1.

Thus we transform to far-field coordinates, to give
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The asymptotic structure follows the earlier

pattern, but now written in (&, 7)-variables;
e obtain
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and for arbitrary 7,(&, ) at this order; here, we have
selected that solution for which all perturbations vanish

if there is no wave present.
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At the next order we find that p; =7 + 5(1 — Zz)

%2%4-110 o , O ++l(1—
P o e ac

0 0
Wy :—(ﬂﬂy o

or 0 o

In summary we have, for example,

P~ +8{m +%(1—22)’7055}
and 3
W~ =zl -I-E{—(Thg 1oz +107o¢ "‘%770555)24'%2 770555}’
both for ) < z<1.

Finally, the kinematic condition at the surface gives
the equation for7y(&,7), with 77;(£,7) arbitrary at this
order; we have

2100z + 30Mog + 3oz =0,

the Korteweg-de Vries equation.




N.B. All higher-order equations describing

the surface profile are linear.

The asymptotic expansion is uniformly valid for 7 — o,

for bounded and suitably smooth initial data.

Indeed, rigorous developments based on this approach
have demonstrated that the KdV equation constitutes a
proper approximation to the problem, for 0<¢<¢g,,
and for times ¢ = g_lro , for some fixed 7, independent
of ¢.

The KdV equation is the archetypal equation for the
development of ‘soliton’/inverse scattering theory.

Soliton theory for the KdV equation:
a very brief overview

Treat the unknown function — a solution of the KdV
equation — as the time-dependent potential of a one-
dimensional, linear scattering problem. The associated
inverse scattering problem, with time evolution
consistent with the KdV equation, can be solved to
recover a solution of this equation.
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where i
K(x,z:0)+ F(x,2.0)+ [ K(x,y:)F(y,2,0)dy =0
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with F(x, z, f) satistying
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the relevant choice is F' = F(x+z,1).

The solitary-wave solution is given by writing
F= e—k(x+z)+a)t+a, = 8k3;

the two-soliton solution is obtained from

F=elve?, 0 =—k(x+2)+8k’t +a; (ky # ky).

Other soliton equations arising from
the classical water-wave problem

Making suitable choices of coordinates and scalings,
we can obtain:

2D KdV/KP:
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cylindrical/
concentric KdV:

Boussinesq:




and there are equations that are close to
being soliton equations:

nearly-concentric KdV

which is integrable for initial data which decays rapidly at infinity

2D Boussinesq
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which possesses a general 2-soliton solution, but only special
N-soliton solutions.

Furthermore, there is the Nonlinear
Schrodinger (NLS) family of equations,
starting with

and the Camassa-Holm (CH) family, starting with
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An important and extensive description of water
waves can be developed following the ‘soliton’ route —

but we now take a different direction in these lectures.







