Lecture 2a

The solitary wave and
Gerstner’s exact solution

The solitary wave

First observed by J. Scott Russell in 1834: a wave which
retains its shape over large distances/times.

Consider irrotational, 1D travelling waves, moving at
constant speed with fixed shape, in water of finite depth
and with rest-conditions at infinity.

Introduce the velocity potential and use the pressure
equation to describe the surface dynamic (pressure)
boundary condition; this gives (nondimensional)
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The nondimensional problem is then
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Because here we consider arbitrary amplitudes, it is
convenient to set ¢ = 1.

The resulting problem, and some properties,
are summarised by:

For irrotational flow, the existence of a steady
solitary wave (moving into stationary conditions)
has been proved, although no closed-form solution

can be written down.




There are some intriguing and useful integral
relations for the solitary wave. We introduce:
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- any streamline

Then, for example, starting with the equation
of mass conservation:
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and so I=cM (Starr, 1947) (and see notes).




There is a wave of greatest height, which
corresponds to u = ¢ at the peak:

This has an included angle of 27/3 at the peak; away
from the peak, u < c; 7,,,x 0-83.

Solution cannot be written in closed form, but many

asymptotic properties can be proved; the detailed
shape is obtained by numerical integration.

The small-amplitude, long-wave (necessarily,

of course) approximation can be written in
closed form:
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This is the famous solitary-wave profile that is important
in ‘soliton’ theory; we will outline its derivation and
mention its relevance in Lecture 3a.

We see that the wave speed is 1 + ga : larger waves
travel faster; also they are narrower (by virtue of the
dependence on +/cg ).




Gerstner’s exact solution (1802)

This is the only known, non-trivial, exact solution for
gravity waves.

We consider a 2D, steadily propagating wave in an
infinite depth of water; it will turn out that the flow

has non-zero vorticity.
The approach uses the Lagrangian description, specified
by two parameters: x'=X'(t;a,b), z'=Z'(t";a,b)

which gives
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The two components of Euler’s equation, (x', z'), Szt
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and then requires

So far, we have a general formulation using
the Lagrangian approach; the Gerstner wave
is an exact solution of this system. So

the position of every particle, at time ¢, is described by
a circular path (with labels a, b):

X'(t:a,b) = a—%ekb sin(ka ~1'\Jg'k ) ;

Z'(ta,b)=b +%ekb cos(ka —t'\/g_’k),

where k> 0 is a constant wave number, and

—0<g<ow, —w<b<h, (b constant).

This maps to a wave in X' e (—0,), Z' € (-, k'],
where Z' =/’ is the free surface.




The free surface is given parametrically o Ty
(parameter a) by

(X’,Z’)Z(a—%ekbo sin(ka—t’\/g_’k),bo +%ekbo COS(ka—l"@)J;

surface kinematic condition is directly satisfied, and
then satisfying the surface pressure condition gives

P(tsa,b)= py—p'g (b=bp) + 25 (2 —*™ ).
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Typical surface profiles:

the limiting profile: 5, =0
(a cusped wave) 13

In summary:

Lagrangian formulation

exact solution (but written parametrically)

particle paths are circles

rotational — non-zero vorticity (decaying with depth)

there is a special cusped solution







