
Lecture 2a
The solitary wave and 

Gerstner’s exact solution 

First observed by J. Scott Russell in 1834: a wave which 
retains its shape over large distances/times. 

The solitary wave

Consider irrotational, 1D travelling waves, moving at 
constant speed with fixed shape, in water of finite depth 
and with rest-conditions at infinity.
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Introduce the velocity potential and use the pressure 
equation to describe the surface dynamic (pressure) 
boundary condition; this gives (nondimensional)
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The nondimensional problem is then
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Because here we consider arbitrary amplitudes, it is 
convenient to set ε = 1.
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For irrotational flow, the existence of a steady 
solitary wave (moving into stationary conditions) 
has been proved, although no closed-form solution 
can be written down.

The resulting problem, and some properties, 
are summarised by:



There are some intriguing and useful integral  
relations for the solitary wave. We introduce:
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any streamline
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Then, for example, starting with the equation 
of mass conservation:
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and so                                   (Starr, 1947) (and see notes).I cM=



There is a wave of greatest height, which 
corresponds to u = c at the peak:
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Solution cannot be written in closed form, but many 
asymptotic properties can be proved; the detailed 
shape is obtained by numerical integration.

This has an included angle of 2π/3 at the peak; away 
from the peak, u < c; max 0 83.h » ×

The small-amplitude, long-wave (necessarily, 
of course) approximation can be written in 
closed form:
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This is the famous solitary-wave profile that is important 
in ‘soliton’ theory; we will outline its derivation and 
mention its relevance in Lecture 3a.
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We see that the wave speed is 1 + εa : larger waves 
travel faster; also they are narrower (by virtue of the 
dependence on         ). ae



Gerstner’s exact solution (1802)
This is the only known, non-trivial, exact solution for 
gravity waves.
We consider a 2D, steadily propagating wave in an 
infinite depth of water; it will turn out that the flow 
has non-zero vorticity.
The approach uses the Lagrangian description, specified 
by two parameters: ( ; , ), ( ; , )x X t a b z Z t a b¢ ¢ ¢ ¢ ¢ ¢= =
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The two components of Euler’s equation,           , 
written in Lagrangian form, are
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So far, we have a general formulation using 
the Lagrangian approach; the Gerstner wave 
is an exact solution of this system. So

the position of every particle, at time t, is described by 
a  circular path (with labels a, b):

( )1( ; , ) e sin ;kbX t a b a ka t g k
k

¢ ¢ ¢ ¢= - -

( )1( ; , ) e cos ,kbZ t a b b ka t g k
k

¢ ¢ ¢ ¢= + -

where k > 0 is a constant wave number, and 
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This maps to a wave in                                         , 
where             is the free surface. 
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The free surface is given parametrically 
(parameter a) by
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surface kinematic condition is directly satisfied, and 
then satisfying the surface pressure condition gives
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Typical surface profiles:

the general profile: 0 0b <
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the limiting profile: 0 0b =

(a cusped wave)
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In summary:

• Lagrangian formulation

• exact solution (but written parametrically)

• rotational – non-zero vorticity (decaying with depth) 

• particle paths are circles

• there is a special cusped solution



End of 
Lecture 2a


