
Lecture 1b
Energy equation and 

integrals of the motion, 
and two classical problems: 
one linear and one nonlinear 

We start with our general governing equations:
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Energy equations
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Using a vector identity leads to
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We consider two cases, applicable to general flows:



Case 1
Steady (but rotational) flow, then
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being constant on lines parallel to     (streamlines) 
and on lines parallel to     (vortex lines); this is 
Bernoulli’s equation (or theorem): conservation of 
energy.
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Case 2

Irrotational flow (but unsteady), so                and then f¢ ¢ ¢=Ñu
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The pressure equation (or unsteady Bernoulli equation).

Integrated mass conservation (for water waves)
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and integrate from                 to                     , using the 
kinematic boundary conditions to give   
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Informative special case is 1D motion: 
with                        and undisturbed at infinity: 
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then                                 : mass of fluid associated with   
the wave is conserved.
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Energy integral
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From earlier, we start with

and take the dot product with     ; introducing       and rewriting 
gives: 
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Integration in z (from bottom to the surface) produces 
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where                                          is the energy/unit area,

the horizontal energy flux vector

and                         is the nett energy input from the pressure forces
doing work at the free surface, but can use   
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Classical linear problem
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We start from our general equations: 
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We measure the depth up from z = 0, so set b = 0; the 
(physical) depth is subsumed into the scale      . 0h¢

Consider arbitrary constant depth and arbitrary wave 
length, for small amplitude, i.e.                 fixed, and for 
1D waves propagating in the x-direction.
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The classical linear 1D system is given by
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to give                              and so                                    ;
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Dispersion relation (with surface tension):

kl d=where              and m denotes 
the value at the minimum 
point. The branch near the 
origin corresponds to 
surface-tension waves 
(ripples); the other branch 
describes gravity waves.
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Nonlinear, long waves
This problem is defined by              for ε fixed;0 ,d ®

this produces the (classical) long-wave problem ; we 
consider 1D propagation.
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We have written                   with                    and( , 0 )u^ =u ( , )x th h= 0 .b º

Thus we have 
( , ) ( f o r 0 1 )p x t zh e h= £ £ +

and we seek the solution for which u = u(x, t);
so the equation of mass conservation, with the boundary 
conditions included, requires 
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Write                                        then we obtain the pair 
of coupled, nonlinear equations
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These two equations can be solved by the 
method of characteristics; first we write them 
as
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which show that

u + 2c = constant on lines d: ;
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These constants are the Riemann invariants.

End of 
Lecture 1b


