Lecture 1b

Energy equation and
integrals of the motion,
and two classical problems:
one linear and one nonlinear

Energy equations

We start with our general governing equations:
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with p' = constant and a conservative body force: F' = -V'QY’

(indeed, Q' = g’z for our water waves).
Using a vector identity leads to
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We consider two cases, applicable to general flows:




Case 1
Steady (but rotational) flow, then

lu' -u' + E, + Q' = constant,
Yo,
being constant on lines parallel tou’ (streamlines)
and on lines parallel to ®' (vortex lines); this is
Bernoulli’s equation (or theorem): conservation of
energy.

Case 2

Irrotational flow (but unsteady), so u'=V'¢’ and then
o' p’
ot'

The pressure equation (or unsteady Bernoulli equation).

= f(¢"), everywhere;

Integrated mass conservation (for water waves) Trge-tey

Start from E;—W+VL-uL =0
1z,

and integrate from z =b(x, )to z=Ah(x,?) , using the
kinematic boundary conditions to give

where d = h — b is the local depth and u, = _[“L(XL»Z t)dz.
b

Informative special case is 1D motion: u; =(u(x,z,),0),
with 5 =1+ H(x,?) and undisturbed at infinity:

i — 0and H — 0 as |x| > oo,

then I H (x,t)dx = constant : mass of fluid associated with
—0 the wave is conserved.




Energy integral

From earlier, we start with
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and take the dot product with u'’; introducing p' and rewriting

gives:
a 1 r__1 ! r 11! ! !/ 1 r__1 !/ ! r 1_1
& Epu-u +pgz [+V <u 5pu-u+p+pgz =0.

Integration in z (from bottom to the surface) produces
E+V, - Z7+2 =0

h!
where g = J’(l p'u'.u'+p'g'zjdz is the energy/unit area,
2
" b’
7 = _[“l (%p’u'-u’ +p'+ p'g'zjdz the horizontal energy flux vector
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and 2 = P, 0h'/ot is the nett energy input from the pressure forces
doing work at the free surface, but can use P, = constant = 0.

Classical linear problem

We start from our general equations:
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p:n&w:5+g(ul-vl)n on z=1+¢n

and w=(u, -V )b on z=b

(where %E%—i—g(u-V).)

Consider arbitrary constant depth and arbitrary wave
length, for small amplitude, i.e. £ > 0,  fixed, and for
1D waves propagating in the x-direction.
We measure the depth up from z =0, so set b = 0; the
(physical) depth is subsumed into the scale /) .
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The classical linear 1D system is given by
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(surface tension included here)
and w=0 on z=0.

Seek harmonic-wave solution: 77 = Aei(]“_a)t)(%.c.)

and write (u, w, p) = (U(2),W(2), P(2)) e ® ) (+¢.c.)

2
to give ddZ—ZV—52k2W =0 and so W = Be®® + Ce %% ;

. 2
then j = —ia)A[M) _ (9) )
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Dispersion relation (with surface tension):

where A = 6k and m denotes
the value at the minimum
point. The branch near the
origin corresponds to
surface-tension waves
(ripples); the other branch
el (1CSCIibes gravity waves.
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Short waves (6k — ©): ¢, ~ iﬁ (¢ ~Jg'1).

For gravity waves (no surface tension): c

Long waves (5k —0): ¢, ~*1 (¢}, ~+g'h)).




Nonlinear, long waves

This problem is defined by § - 0, for ¢ fixed;

this produces the (classical) long-wave problem ; we
consider 1D propagation.

Thus we have the system:

upte(wu, twu,)=-p.; p, =0, u, +w

X
with p=n& w=n,+eup, on z=1+¢y

and w=0 on z=290,

We have writtenu | = (u,0) with 7 =7 (x,{) and b

Thus we have
p=n(x,t) (for 0<z<T+¢en)
and we seek the solution for which u = u(x, 7);

so the equation of mass conservation, with the boundary
conditions included, requires

w=| LK z.
1+¢n

Write h(x,t)=14¢n(x,t) then we obtain the pair
of coupled, nonlinear equations

uotuu, +h,o =05 b+ (uh), =0,




These two equations can be solved by the
method of characteristics; first we write them
as

0 0
{8t+(u+6)8 }(u+20) 0;

{§t+(u ) }(u 2¢)=0

which show that

u + 2¢ = constant on lines C™ : =u+c;

dr

u—2c=constantonlinesC :—=u—c.

dr
These constants are the Riemann invariants.




