
Introduction to the 
mathematical description of 

water waves 
Robin Johnson

Newcastle University

Outline of lectures
1a  governing equations, boundary conditions, etc.

1b  integrals of the motion, simple wave problems

2a  solitary wave and Gerstner’s exact solution  

2b  introduction to asymptotic (parameter) methods

3a  Korteweg-de Vries (KdV) eqn, ‘soliton’ theory

3b KdV eqn for variable depth and with background vorticity

4a  asymptotic theory for ‘cat’s eyes’ and critical levels

4b  edge waves over variable depth

5a  periodic waves with vorticity: example of breakdown

5b  oceanic example: the Equatorial Under Current
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Lecture 1a
Governing equations, 

boundary conditions, non-
dimensionalisation and scaling 

Modelling the fluid

Treat the water as  an incompressible, inviscid fluid 
with zero surface tension (but will include a brief 
comment on this later).
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The fundamental governing equations are therefore 
Euler’s equation and the appropriate equation of 
mass conservation:

We invoke the continuum hypothesis.
The water moves over an impermeable, stationary 
bed, under the action of constant acceleration of 
gravity (     ) and with constant pressure (atmospheric 
pressure) at the surface.
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(0,0, )g¢ ¢= -F

,p r¢ ¢

The primes here denote dimensional (physical) 
variables; these will be removed shortly.

By virtue of the continuum hypothesis, we take all 
functions to be continuous, and suitably differentiable.

^
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Before we proceed with the general formulation, 
we introduce two important descriptors of flows:

A streamline is an imaginary line in the fluid which 
everywhere has the  velocity vector as its tangent, at 
any instant in time; let this line be ( , )s t¢ ¢ ¢=x X

then                          with                at fixed    .  d ( , )
d

t
s
¢

¢ ¢ ¢=
X u X 1C¢ÎX t¢

A particle path is the path,                , followed by a point 
(particle) as it moves in the fluid according to the given 
velocity vector, so  

providing a determination of           , given                . 

( )t¢ ¢ ¢=x X

d
dt
¢

¢=
¢
X u

( )t¢ ¢X ( , )t¢ ¢ ¢u X
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Comment: for steady flow, the particle paths 
and the streamlines coincide.
An important additional observation:  The description of 
a fluid as outlined so far, defining the properties of the 
fluid at any point, at any time – the most common one in 
use – is called the Eulerian description. 
The alternative is to follow a particular point (particle) 
as it moves in the fluid, and then determine how the 
properties change on this particle; this is the Lagrangian
description.

For most of our work, we use the Eulerian description, 
but there will be one important example that requires 
the Lagrangian approach.
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( , )z h t^¢ ¢ ¢ ¢= x
( )w b^ ^¢ ¢ ¢= × Ñu( )z b ^¢ ¢ ¢= x
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In addition, we require initial data; however, for much 
that we do here, we assume that suitable data exist for 
the solutions that we develop. 

We now construct the boundary conditions.

Kinematic condition: Points in a bounding surface of 
the fluid remain in the surface (in the absence of 
mixing); let such a surface be                  then, as the 
fluid moves, particles remain in the surface if            .

( , ) 0S t¢ ¢ =x
D 0
D
S
t
=
¢

So at the free surface,                     , we obtain                  . 
On the bottom,                 , we have                         .
Dynamic condition: This prescribes the stress at the 
free surface; so                                on                       .  ( , )z h x t^¢ ¢ ¢ ¢=



Summary of the classical water-wave problem:
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We proceed on the assumption that, in a suitable 
domain and with given initial data, we have a well-
posed problem.
Observe that a function of particular interest – the 
surface wave – appears in a boundary condition.

One final property of the flow: Vorticity
This is defined as                    and measures the local 
spin of the fluid.

¢ ¢ ¢=Ñ Ùω u

It is observed that many flows have almost zero vorticity 
almost everywhere (but there are important exceptions, 
and water waves propagating in the presence of a 
background vorticity is obviously one of them).
Nevertheless, a good starting point is to assume zero 
vorticity, then           and so              , where             is 
the velocity potential; for incompressible flow (as here)

¢ ºω 0 f¢ ¢ ¢=Ñu ( , )tf ¢ ¢x

2 0f¢ ¢Ñ = – Laplace’s equation.
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For 2D flow, we also have a stream function, e.g. from
,u

y
y ¢¶¢ =
¢¶
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+ =
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then



Non-dimensionalisation

0h h ah¢ ¢ ¢= + 0 0( )ap p g h z g h pr r¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢= + - +and 
Introduce
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and the scales
0 0 0(length), (length), (speed), (time).h g h g hl l¢ ¢ ¢ ¢ ¢ ¢ ¢

Sketch showing 
the typical scales

Define new (nondimensional) variables:
;l^ ^¢ ¢=x x 0 ;z h z¢ ¢= ( )0 ;t g h tl¢ ¢ ¢ ¢=

0 ;g h^ ^¢ ¢ ¢=u u ( )0 0 ;w h g h wl¢ ¢ ¢ ¢ ¢= 0 ,b h b¢ ¢=
(where the definition of w ensures that mass conservation is 
satisfied, consistent with the existence of a stream function in 2D).
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We have introduced the two fundamental parameters 
used in classical water-wave theory: 

0a he ¢ ¢=

0hd l¢ ¢=
: amplitude parameter;
: long wavelength (or shallowness) parameter.



0e ®
The case ε = 0 corresponds to no waves; indeed, 
disturbances vanish as             . Our equations must 
be consistent with this choice. 
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( , , ) ( , , )w p w pe^ ^®u u
Thus, we redefine (‘scale’) according to

(where the underlying flow is assumed to be stationary 
– we will allow an existing background flow later, 
requiring an adjustment to this scaling property).

Important observation:

Thus we work, initially, with this form of the 
governing equations:
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D t t
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Simplified system: irrotational flow

In this case we introduce the velocity potential, so
gives f= Ñ Ù = = Ñω u 0 u

2 2 0 ,z zf d f^+ Ñ =and so
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15

2 ( ) on .z b z bf d ^ ^= × Ñ =uand

N.B. We have used subscripts to denote partial derivatives.

Final comment on the governing equations:
Some problems can be reformulated so that they 
depend on only one parameter, taken to be ε for 
arbitrary δ. These are problems where only one length 
scale is relevant.

This is possible by carrying out one further 
transformation:

, ,t T w Wd d e
de e^ ^= = =x X

which produces our earlier non-dim., scaled 
equations with replaced by ε, for arbitrary δ.2d
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N.B. Then at fixed ε is not accessible.0d ®



0e ® (δ fixed): the linearised problem; 

0d ® (ε fixed): the long-wave or shallow-
water problem.

There are two problems of classical interest, 
based on two limits:

The first case recovers the most general linear problem;  
the second is fully nonlinear, but the pressure correction 
(due to the passage of the wave) is missing: there is no 
dispersion in this case.

17

We will examine these two classical problems in 
the second half of the next lecture.

End of 
Lecture 1a


