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Notation page

In this page, we write down the common conventions we are going to use throghout the
lecture notes.

0.1 Mathematical notation

We denote vectors with bold symbols, i.e. u, v. We should use

\boldsymbol{}

as much as possible, since it preserves the inclination of the symbols, whereas

\mathbf{}

does not.
Partial derivatives are denoted as ∂

∂t
, with variable not indexed. Whereas one could

use ∂t when the situation is suitable.
In the integrals, the differentials are always in the end, namely∫

f(x)dx,

∫
u(x)dx (1)

We denote the Laplacian as ∆ (instead of ∇2).
We use a compactified notation for the Dirac delta function in which all variables in

the upper index are summed and all those in the lower index are subtracted. For example,

δkk1k2 = δ(k − k1 − k2) (2) not:delta

δkk1k2k3
= δ(k + k1 − k2 − k3). (3)

We use bold symbols with a chapeau x̂ to denote a unit vector.

0.2 Other notation

Here we can list any other notational convenience we are going to use.
We denote relative vorticity or simply vorticity by ζ, the potential vorticty (PV) by

Q, the height of a free surface by η.

We denote the non-dimensional parameters Rossby number by Ro and Brunt Vaisala
frequency by N .

We should agree on itemize or lists we are using (for the moment it seems ok though)
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Chapter 1
Wave Turbulence: a theoretical physics
perspective

MD: I will use the colour blue to write down comments/discussions that are not on the
slides.

1.1 Introduction

intro to the lecture notes

1.2 Phenomenology of turbulence and cascade phenom-
ena

intro to the Lecture 1

1.2.1 Hydrodynamic turbulence

To introduce the main mechanisms observed in a turbulent phenomenon, we first review
the classical theory of hydrodynamic turbulence. Consider a 3D incompressible fluid flow
satisfying the Navier-Stokes equations in R3 (or T3), namely

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ ν∆v + f , x ∈ R3, t ≥ 0 (1.1) eq:momNS

∇ · v = 0, (1.2) eq:div

where v(x, t) is the velocity field, p(x, t) is the pressure, f(x, t) is an external forcing and
ρ, ν are constants corresponding respectively to the density and the kinematic viscosity.

A first key consequence of the divergence-free condition (1.2), is that multiplying (1.1)
by v and integrating in space we get∫

(v · (v · ∇)v + v · ∇p) (x, t)dx = −
∫ (

1

2
|v|2 + p

)
(x, t)∇ · v(x, t)dx = 0, (1.3)
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where in the first identity above we have simply integrated by parts. As a consequence,
we obtain

E(t) =
1

2

∫
ρ|v(x, t)|2dx = E(0)− ν

∫∫
|∇v(x, t)|2dxdt+

∫∫
(f · v)(x, t)dxdt. (1.4) eq:consE

Thus, when ν = f = 0 we get that the energy is conserved. In the sequel, for the sake of
convenience we will assume ρ = 1.

To investigate the influence of the viscosity parameter on the dynamics, it is important
to non-dimensionalise the equations. In particular, let V, L be the characteristic velocity
and length scales. 1 The characteristic time scale is then T = L/V . With a slight abuse
of notation, we pass to non-dimensional quantities as

v → V v, x→ Lx, t→ L

V
t, p→ V 2p, f → L

V 2
f . (1.5) scaling

With this rescaling, (1.1) become(
∂v

∂t
+ (v · ∇)v

)
= −∇p+

1

R
∆v + f (1.6) eq:NS

where the Reynolds number is defined as

R =
LV

ν
. (1.7)

This parameter has a crucial influence on the dynamics of a fluid flow. Indeed, as observed
by O. Reynolds [39] in his famous pipe-flow experiment, a laminar fluid flow remains
laminar for small values of R. On the other hand, for R� 1 (obtained by increasing the
velocity of the background laminar flow), Reynolds observed the transition to a turbulent
regime, i.e. the flow become spatially and temporally disordered. Add maybe picture of
Reynolds experiment?.

A first heuristic explanation of this phenomena goes as follows: the forcing term supply
energy to the flow at large spatial scales. However, when R� 1 viscosity is effective only
at small scales. Therefore, the separation of scales between forcing and dissipation requires
a transfer of energy across scales via the inertial term, i.e. v · ∇v. See Figure 1.1 for a
schematic picture of this cascade mechanism.

1.2.1.1 Statistical theory of turbulence

The experimental evidences suggests that turbulent flows are chaotic, namely, v is not
predictable. However, the statistical properties of v are predictable - for example moments
of v. Some important examples are

E = 〈1
2
|v|2〉, mean energy

Ω = 〈1
2
|∇ × v|2〉, mean enstrophy,

where 〈·〉 denotes “some” average.
1For instance, considering a fluid flow in a pipe, V is the mean velocity of the fluid and L is the length

of the pipe.
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Figure 1.1: Large scale structures are split into smaller ones, with the total energy being
conserved at each scale. However, also the inverse process can happen, called backscatter.
The observed energy transfer from large scales to small ones should be considered on
average, but fluctuations can be strong. This mechanism is also known as Richardson
cascade. Pictures to be properly made

fig:Richardson

Remark 1. In the rest of these notes we will be a bit loose in the use of averages, but
usually we can distinguish two main point of views: 1) mathematically, 〈·〉 denotes an
ensemble average with respect to realisations of the initial condition. 2) Experimentally,
〈·〉 usually denotes a spatial or time average.

In absence of boundaries, for a turbulent fluid flow we assume that a statistically
steady state is eventually reached in which forcing and dissipation balance on average.
In addition, it is believed that at small scales, symmetries of the Navier-Stokes equations
are restored in a statistical sense [22]. We will then assume that moments of v have the
following properties:

• Stationarity: 〈vi(x, t) vj(x′, t′)〉 = fij(x,x
′, t− t′).

• Homogeneity: 〈vi(x, t) vj(x′, t′)〉 = fij(x− x′, t, t′).

• Isotropy: 〈vi(x, t) vj(x′, t′)〉 = f(|x− x′| , t, t′).

We now investigate some of the fundamental properties that one can deduce from the
above mentioned hypothesis.

Consider 〈·〉 to be the spatial average, ignoring the forcing term in (1.4), we can define
the mean rate of energy dissipation as

ε(ν) = −1

2
∂t〈v2〉 = ν〈|∇v|2〉. (1.8) eq:meanendiss

In a turbulent regime, it is often observed anomalous dissipation, which can be quantified
as follows.

hyp:dissanom Hypothesis 1 (Dissipative anomaly). The mean rate of energy dissipation remains finite
(and positive) in the limit ν → 0. More precisely, there exists a constant ε such that

lim
ν→0

ε(ν) = ε > 0. (1.9)

This feature may seem unusual at a first glance. However, a basic example where this
can be computed explicitly is the viscous forced Burgers equation

∂tu+ u∂xu = ν∂xxu+ f. (1.10)
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This equation can be solved through the so-called Cole-Hopf transformation and, for some
initial data, one observes this anomalous dissipation. This is strongly related with the
formation of shocks when ν = 0, that will dissipate energy even in absence of viscosity.
We refer to [46] for more details and for other toy models where anomalous dissipation can
be explicitly characterized. Add also reference to the example of Drivas et al in passive
transport

To progress beyond the global energy budget, we need to look at the solution to (1.1)
in the Fourier space. We define the Fourier transform as to check definition of Fourier
transform with other lectures

v(x, t) =

∫
v̂(k, t) eik·xdk v̂(k, t) =

1

(2π)d

∫
v(x, t) e−ik·xdx. (1.11)

From the divergence-free condition (1.2), we readily get

k · v̂ = 0, (1.12)

so that v̂ must be orthogonal to k. We can directly project v̂ on this hyperplane on the
Fouries space thanks to Leray-projection operator given by

P̂(k) = Id− k ⊗ k
|k|2

. (1.13) def:Leray

Notice that P(∇g) = 0 for any function g. Thus, taking the Fourier transform of (1.6)
with f = 0 and applying the operator P we obtain

(∂t + νk2) v̂i(k) =

∫
Tijm(k,p, q) v̂j(p) v̂m(q)dp dq (1.14) eq:FNS

where the summation convention on repeated indices is implied and we define

Tijm(k,p, q) = −ikj
(
δim −

kikm

|k|2

)
δkp,q, (1.15)

where we recall the notation add REF to notation delta function. Notice that the term
in the righ-hand side of (1.14) is nothing more than the Fourier transform of P(v · ∇v).
Let us now present some classical result that can be obtained combining the Fourier
representation of the velocity field and the hypothesis we made on it. These results are
named after Kolmogorov REF and some historical discussion?

� The Kolmogorov spectrum. Thanks to the isotropy hypothesis, we can thus
define the spectral energy density. In order to do so, ignoring the time-dependence for the
sake of simplicity, first observe that from the Parseval’s identity we have

E =
1

2

∫
|v(x)|2dx =

1

2

∫
|v̂(k)|2 dk.

Then, assuming isotropy on v̂, namely v̂ = v̂(|k|) := v̂(k) one has

E =
2

3
π

∫
|v̂(k)|2 dk :=

∫
E(k)dk. (1.16) def:ENSsp

E(k) is the aforementioned spectral energy density, which describes how energy is dis-
tributed across scales of motion.
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fig:K41

Figure 1.2: Schematic picture of the power-law behaviour of the energy spectrum when
forcing at large scales. Make the picture in tikz

In the long-time limit, we assume that we reached a (statistically) stationary state, so
that ∂tE(t) = 0. Then, taking the time derivative of (1.4) we infer

〈f · v〉 = ν〈|∇v|2〉. (1.17)

If the forcing injects energy at a constant mean rate, namely

〈f · v〉 = ε > 0, (1.18)

we must also have that the mean rate of energy dissipation satisfy ν〈|∇v|2〉 = ε. Compare
this with the Hypothesis ?? of dissipative anomaly. At this point, it is important to
distinguish different length scales. From a dimensional argument, first observe that

[ε] = L2T−3, [ν] = L2T−1. (1.19)

Hence, the only length scale that can depend on ν, ε is

Lν = Cε−
1
4ν

3
4 , (viscous length scale) (1.20) eq:viscousL

Notice that Lν → 0 as ν → 0. This length scale quantify the small-scales where dissipation
becomes effective. On the other hand, we assume that the forcing f acts on a fixed large
length scale Lf . The regime we are interested in is

Lν � |x| � Lf , inertial range. (1.21)

One of the main hypothesis in hydrodynamic turbulence is the following add REF:

Hypothesis 2 (Kolmogorov 1941). When ν → 0, in the inertial range, E(k) depends
only on ε and k.

We can now deduce the famous Kolmogorov 5/3 law by a simple dimensional argument
to verify the assertion above. Indeed, we know that the quantity of interest have the
following dimension

[k] = L−1, [E(k)] = L3T−2, (1.22)

which imply that the only possible scaling law is

E(k) = C ε
2
3 k−

5
3 . (1.23) eq:K53
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Add comments about the power spectrum (1.23) and its experimental and numerical
verification?

� The Kolmogorov’s 4/5-law. Notation slightly changed wrt slides Proceeding with
the analysis in the Fourier space, we can split the velocity into low and high frequencies,
depending on a fixed frequency scale K, as

v̂(k, t) = (v̂)≤K(k, t) + (v̂)>K(k, t), (1.24) eq:lowhigh

where

(v̂)≤K(k, t) = v̂(k, t)χ|k|≤K , (v̂)>K(k, t) = v̂(k, t)χ|k|>K (1.25)

and χ it is just a frequency cut-off.

Remark 2. In the physical space, the low-high frequency splitting (1.24) correspond to a
large-small scale splitting of v at a fixed length scale l = K−1. More precisely,

v(x, t) = (v)≤K(x, t) + v>K(x, t), (1.26)

where

(v)≤K(x, t) =

∫
|k|≤K

v̂(k, t) eik·xdk, (v)>K(x, t) =

∫
|k|>K

v̂(k, t) eik·xdk. (1.27)

In addition, for any function f, g one has

〈f≤Kg>K〉 = 0. (1.28) eq:ort

The low frequency part of the solution carry on the cumulative mean energy between
wave-numbers 0 and K, given by

E(K) =
1

2
〈|v≤K |2〉 =

∫
k≤K

E(k) dk. (1.29)

To compute the time derivative of E(K), it is more convenient to directly work with the
equations in the physical space (1.1). Multiply the equation (1.1) by v≤K , integrate in
space and use Parseval’s identity to get the scale resolved energy budget

∂E(K)

∂t
+ Π(K) = −2νΩ(K) + F (K), (1.30) eq:enbud

where we define:

Ω(K) =
1

2
〈|∇v≤K |2〉 =

1

2
〈|∇ × v≤K |2〉 =

∫
k<K

k2E(k) dk (cumulative enstrophy).

This term simply comes from the dissipation. Notice that we also used the identity
|k× v̂(k, t)| = |k||v̂(k, t)| which holds since v is divergence-free (hence orthogonal to k).
In addition, the divergence-free condition removed also the pressure term.
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Then we have

F (K) = 〈f · v≤K〉 =

∫
|k|<K

f̂(k) · v̂(k) dk (cumulative energy input).

Finally, we have

Π(K) = 〈(v · ∇v) · v≤K〉 (energy transfer).

The term above does not cancels as if we were multiplying by v. However, this term still
enjoys some cancellations. More precisely, since v = v≤K + v>K and

〈(v≤K · ∇v≤K) · v≤K〉 = −1

2
〈|v≤K |2∇ · v≤K〉 = 0, (1.31)

〈(v>K · ∇v≤K) · v≤K〉 =
1

2
〈v>K · ∇|v≤K |2〉 = 0, (1.32)

where the last identity follows by (1.28). Therefore

Π(K) = 〈(v≤K · ∇v>K) · v≤K〉+ 〈(v>K · ∇v>K) · v≤K〉.

Differentiating (1.30) with respect to K gives a local equation for the spectral energy
density, E(k):

∂E(k)

∂t
+
∂Π(k)

∂k
= −νk2E(k) +

∂F (k)

∂k
. (1.33)

The scale resolved energy budget equations express the physically reasonable fact that
in the inertial range, where forcing and dissipation are negligible, the rate of change
of energy at a given scale is equal to the flux of energy through that scale due to the
energy-conserving nonlinear interactions.

Assume now that we reach a stationary state, namely ∂tE(K) = 0, with a finite mean
energy E = 〈|v|2〉 < +∞. Since f acts only on small frequencies, let K be large enough
so that it is outside the forcing range. If this is the case, the cumulative energy input
becomes the total energy input, namely F (K) = 〈f · v〉 = ε. Under these hypothesis, the
scale resolved energy budget relation becomes

Π(K) = −2νΩ(K) + ε. (1.34)

We are now interested in taking the limit ν → 0. For a fixed frequency scale K, we claim
that

lim
ν→0

νΩ(K) = 0,

which means that a dissipative anomalous behaviour can only be observed at large fre-
quencies. To prove this fact, notice that

2νΩ(K) = ν〈|∇v≤K |2〉 ≤ νK2〈|v|2〉 = νK2E,

which goes to zero as ν → 0 since E and K are fixed and finite. Under the assumptions
made above, the energy transfer is now constant (as a function of K) and equal to ε:

Π(K) = ε. (1.35) const-flux
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This relationship is exact for stationary, homogeneous, isotropic turbulence.
It is also possible (not obvious though, see [22, Sec. 6]) to show that Π(K) can be

written in terms of velocity increments in physical space, defined as:

δv(r, t) = v(x+ r, t)− v(x, t)

δv‖(r, t) = [v(x+ r, t)− v(x, t)] · r
|r|
.

In particular, Π(K) is a Fourier sine transform of a 3rd order correlation function of velocity
increments add computations here?:

Π(K) = − 1

8π2

∫
sin (Kr)

r
∇r ·

( r
r2
∇r · 〈|δv(r)|2 δv(r)〉

)
dr

= − 1

6π

∫ ∞
0

sin (Kr)

r
(1 + r∂r)(3 + r∂r)(5 + r∂r)

〈δv‖(r)3〉
r

dr.

The first identity above holds only under the homogeneity hypothesis, where the second
one crucially requires the isotropy. Letting x = Kr, the relation Π(K) = ε becomes

1

6π

∫ ∞
0

sinx

x
F
( x
K

)
dx = −ε (1.36) eq:Pik

where
F (r) = (1 + r∂r)(3 + r∂r)(5 + r∂r)

S3(r)

r
, S3(r) = 〈δv‖(r)3〉 (1.37)

Now assume that F (r) must become constant for small r, say F (r) = c when r � 1.
Noting that ∫ ∞

0

sinx

x
dx =

π

2
, (1.38)

sending K →∞ in (1.36), we deduce

F (r) = −12ε, r � 1.

Thus in the inertial range limit K →∞, Sr(r) satisfies an ODE:

(1 + r∂r)(3 + r∂r)(5 + r∂r)
S3(r)

r
= −12ε (1.39)

The general solution of this ODE is

S3(r) = c1r
−4 + c2r

−2 + c3 −
4

5
εr, (1.40)

but the only solution vanishing as r → 0 is

S3(r) = −4

5
εr. (1.41) eq:K45

This is the celebrated Kolmogorov’s 4
5
-law.

This paragraph was not on the slides

� Onsanger’s conjecture and Dissipative anomaly MD: Is it worth it to say
something about Onsanger’s conjecture? Namely from K45 law, one deduce that 〈δv3〉 ∼ r
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Figure 1.3: Schematic picture of the power-law behavior of the wave spectrum when
forcing at large scales.

which imply |v(x+ r, t)− v(x, t)| ∼ (εr)1/3. If the velocity field is more regular, then the
energy must be conserved (Constantin et. al.). If the velocity field is less regular, then
non-uniqueness via convex integration (De Lellis- Szekelihydi up to Isett). Exponent 1/3
is open

One can also show that the 4/5-law is consistent with the dissipative anomaly assump-
tion. Indeed, recalling that our considerations hold in the inertial range, so that r � Lν ,
we deduce

ν〈|∇v|2〉 ≈ ν lim
r→Lν

1

r2
〈|v(·+ r)− v(·)|2〉 ≈ νε

2
3 (Lν)

− 4
3 ≈ ε, (1.42)

where in the last line we used (1.20).

1.2.2 Wave turbulence and cascade phenomena

Now, we move on to other turbulent phenomena. In many other non-linear PDEs, we
have conserved quantities, and we expect similar cascades to the hydrodynamic case
when these PDEs are subjected to forcing and dissipation that are separated in scale. In
general, wave turbulence is the theory of cascade phenomena in nonlinear dispersive wave
equations taking the form

∂Ψ

∂t
= L(Ψ) +N (Ψ) + Γ, (1.43)

where L is our linear term, N is our nonlinear term (which is analogous to advection in
the Navier-Stokes case), and Γ represents both the forcing and dissipation on our PDE.

We represent the wave spectrum by

nk = 〈|Ψ̂k|2〉, (1.44)

which is analogous to our spectral energy density E(k) in the hydrodynamic case. In
fact, we can keep the same picture in mind, replacing the energy spectrum with the wave
spectrum.

There are several examples of such PDEs in which we may find one (or even two)
conserved quantities:
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1. Nonlinear Schrodinger Equation (NLS): Some physical situations which can be
modelled using this PDE include Bose-Einstein condensates modelling the dynam-
ical formation of cold atoms, nonlinear optics, and modulation of monochromatic
dispersive wave trains in surface gravity waves. Here, we write the Hamiltonian
Equation for the complex field Ψ(x, t) as

i
∂ψ

∂t
= −∆ψ + V (x)ψ + g |ψ|2 ψ (1.45)

=
δH
δψ∗

, (1.46)

where H =
∫
dx[|∇Ψ|2 + g

2
|Ψ|4] represents our energy when our confining potential

V (x) = 0. This is the first of our conserved quantities. In fact, for the NLS, we
also have a second conserved quantity, the wave action N =

∫
|Ψ|2dx. This is in

contrast to the 3D Navier-Stokes example, and here each conserved quantity will
experience its own cascade.

2. Water Wave Equations This models the motion of a free fluid surface subject to
gravity and surface tension. There are two limiting regimes, the capillary limit where
there are short waves that feel the surface tension the most due to the curvature, and
the gravity limit in which long waves experience negligible surface tension but gravity
is dominant. For our mathematical model, we take an incompressible, irrotational
fluid with free surface z = η(x, y) and the bottom of the fluid z = −h(x, y), and g, σ,
and ρ representing gravity, surface tension, and density respectively. The equations
are given by

∆φ = 0 on −h(x, y) < z < η(x, y, t)

∂φ

∂z
+∇φ · ∇h = 0 on z = −h(x, y)

∂η

∂t
+∇φ · ∇η =

∂η

∂z
on z = η(x, y, t)

∂φ

∂t
+

1

2
|∇φ|2 + gη =

σ

ρ
∇·
(

∇η√
1+|∇η|2

)
on z = η(x, y, t)

The first equation here represents our incompressibility condition, the second that
our system is closed from below and has no transverse velocity, the third repre-
sents the velocity on the surface, and the last is the Bernoulli equation giving the
energy balance across our free surface. Note that the last two equations are the
more significant ones here. For the third equation, the shape of the free surface is
time dependent and must be determined as part of solving the equation. Zakharov
showed that this is a 2-dimensional Hamiltonian system with conserved quantity
H =

∫
H dxdy for

H =

η(x,y,t)∫
−h(x,y)

1

2
|∇φ|2 dz +

1

2
η2 +

σ

ρ

(√
1+|∇η|2−1

)

3. Barotropic Potential Vorticity Equation Here, as seen in Peter’s lectures,
the singular quasi geostrophic equation models the large scale dynamics of Rossby
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Figure 1.4: Water Waves

Waves:
∂

∂t
(∇2ψ − Fψ) + β

∂ψ

∂x
+
∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
= 0 .

with F being the Rossby deformation radius, and we use the quantity v = ∇ ×
ψ(x, y, t) ẑ to represent the velocity of geostrophic wind. Like in the case of the NLS,
we have two conserved quantities, E the energy and Q the potential enstrophy:

E =
1

2

∫
dx
[
|∇ψ|2 + Fψ2

]
,

Q =
1

2

∫
dx
[
∇2ψ − Fψ

]2
.

4. Föppl-von Kármán equation This is used to represent the turbulence of waves on
a thin elastic plate. The equation describes the evolution of the surface displacement
ζ and the 2-dimensional stress χ as

ρ
∂2ζ

∂t2
= −D

h
∇4ζ +N [χ, ζ] (1.47) fvk1

∇4χ = −E
2
N [ζ, ζ] , (1.48)

where ρ, h,D, and E represent the denisty, thickness, bending stiffness, and Young’s
modulus of the plate respectively. Here, the nonlinear term N is given by

N [f, g] =
∂2f

∂x2

∂2g

∂y2
− 2

∂2f

∂x∂y

∂2g

∂x∂y
+
∂2f

∂y2

∂2g

∂x2
. (1.49) fvk2

Miquel et. al. 2013 paper picture and description: experiment vs. simulation

Just as with the Navier-Stokes Equation example, we want to talk about exchange
between various scales in these examples, and to do this we will once again look at these
equations in Fourier Space. To simplify matters, we will choose appropriate choice of
complex variables ak in which all of these equations can be written roughly (here the
equalities are not necessarily strict) in one of the following two ways, one for a 3-wave
interaction and the second for a 4-wave interaction:

∂tak + iωkak =

∫
dk1dk2T

k
k1k2

ak1ak2 δ
k
k1k2

(1.50)

∂tak + iωkak =

∫
dk1dk2dk3T

kk1
k2k3

ak1ak2ak3 δ
kk1
k2k3

. (1.51)
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In each of these, ωk represents the dispersion relation depending on the linear part of
the equation of motion, and the right hand side is a convolution with some nonlinear
interaction coefficient T kk1k2 or T kk1k2k3

. Note that we had a very similar looking equation
for the Navier-Stokes equation 1.14.

With this setup, let us look at two of our four examples: First for the NLS, we can
write it in the 4-wave interaction equation with

ak = ψ̂k (1.52)
ωk = k2 (1.53)

T kk1k2k3
= −i g (1.54)

Here, we have a 4-wave interaction as we are dealing with cubic nonlinearity. On the other
hand, for our third example of the Barotropic Potential Vorticity Equation, we have a
3-wave interaction due to the quadratic nonlinearity. Therefore, in the notation of our
3-wave interaction equation, we have

ak =
k2 + F√
|kx|

ψ̂k (1.55) def:aBPV

ωk = − kx
k2 + F

(1.56) def:omBPV

W p
q r = −1

2

√
|qx| |rx|
|px|

(q × r)z (q2 − r2)

(q2 + F ) (r2 + F )
. (1.57) def:WBPV

I’m not sure why it was switched into W notation on the slides, but I changed it here.
MD: It is W because is the one he uses afterwards. Maybe explain here this change of
notation?

Note that in the Barotropic Potential Vorticity example, the complex variable ak is
more complicated than simply ψ̂k. The reason for this is that we want the ak to have
specific properties. Namely,

1. We want the quadratic part of the spectral energy density to take the form

Ek = |ωk| nk.

2. We want the lowest order "non-resonant" terms to be removed from the equations
of motion. For example, an equation that looks quadratic may not actually have
any nonlinear resonances at the quadratic level. For water waves equations in the
gravity wave limit, we have

ak =
1√
2λk

ηk + i

√
λk
2
ϕk,

where ηk and ϕk are the 2-dimensional Fourier transforms of η(x, y, t) and φ(x, y, z =
η(x, y, t), t) respectively and

λk =
ωk

g + σk2/ρ

ωk =
√
k(g + σk2/ρ) tanh(kh).
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acascade

Figure 1.5: An Abstract Cascade Phenomena

The change of variables allows us to remove the lowest-order non-resonant term,
and get a diagonal Hamiltonian. This phenomenon is also present for the Föppl-von
Kármán Equation, and the expressions for the wave interaction coefficients for each
can be seen in [55]. Include some of that? Calculations?

From now on, we will assume that the ak are given and use the general 3-wave and 4-
wave interaction formulas. Hydrodynamics is just one of a large class of driven-dissipative
systems that exhibit some sort of cascade phenomena. In contrast to wave turbulence,
condensed matter and soft matter experience cascade in mass space rather than frequency
space. There are also models related to self-organized criticality in which cascade phe-
nomena are present. In all of these, we have a conserved quantity, H which is preserved by
nonlinear interactions in the inertial range between forcing and dissipation and a source
and sink of H that are strongly separated. For each of these, Figure ?? gives a general
picture of the cascade phenomena for each of these systems.

For each of these systems, we also distinguish between direct and inverse cascades
depending on the direction of the transfer. For direct cascades, forcing is large scale and
dissipation is small scale and vice versa for inverse cascades, as seen in Figure 1.2.2 in
frequency space. Note that inverse cascade is separate from the phenomena of backscatter.
For systems that involve more than one conserved quantity we often see both sorts of
cascades happening simultaneously. For example in the NLS, the energy exhibits a direct
cascade, while the wave action exhibits an inverse cascade. On the other hand, ror the
BVP, the energy exhibits an inverse cascade, the potential enstrophy exhibits a direct
cascade. This is why for a mathematical analysis it is important how limits are taken. If
direct cascade scaling is being examined, it is important to take limits in such a way that
forcing is on a large scale relative to the frequencies being looked at.
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dicascades

1.2.2.1 Dimensional analysis and phenomenology of wave turbulence

Schematically, the equations of motion in Fourier Space are

∂ak
∂t
∼ −i ωk ak +

∫
(dk)n−1W

(n)
k (ak)n−1 δ(k). (1.58) eq-EoMk

The important parts of this equation are that we have a time derivative of a Fourier
variable, our dispersion relation term, and a convolution of fields in the nonlinear term.
The Wk now represents our nonlinear interaction coefficient. The δk term encodes spatial
homogeneity and reflects the conservation of momentum how?. Here, n is the number of
waves participating in the interaction, for example 4 for the NLS and 3 for BPV. Most of
the systems we are interested in here are scale invariant, and as such we may write

ωk = c kα

W
(n)
kk1...kn−1

= g kγn fkk1...kn−1 .

In these, α and γn are scaling exponents and c and g are dimensional constants. For
example for the NLS α = 2, and for capillary waves α = 3/2, and for gravity waves
α = 1/2. Note that these assumptions on ωk and W

(n)
kk1...kn−1

do not hold for Rossby
waves as the system is not isotropic. In contrast to the Navier-Stokes case, we have two
dimensional constants rather than one.

Based on our choice of ak, we have for the spectral energy density in the isotropic
case:

E =

∫
|ωk| nkdk

=

∫
Ek dk =

∫ ∞
0

Ek dk.

Just as for Navier-Stokes we want a scale-by-scale energy budget in the inertial range
which is given as

∂Ek
∂t

= −∂Jk
∂k

.

So, we have a spectral conservation law: that the rate of change of energy at scale k is
the divergence of a current or flux.
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We can also perform similar dimensional analysis to the Navier-Stokes case to get
some enlightening results in the inertial range. These allow us to orient ourselves before
getting involved in more detailed computations. using dimensional analysis, we get that

[k] = L−1 [dk] = L−d [δ(k)] = Ld [ωk] = T−1.

For some explanation of where these come from, note that as k is a wave vector, it
should correspond to L−1 and ωk is a frequency, so it should correspond to T−1. For dk and
δ(k), we are using the schematic equations of motion. From here, since E =

∫
ωkakakdk:

[ak] = E
1
2 T

1
2 L

d
2 ,

leaving E as a unit as in different scenarios it could have different units. We will use this
dimensional analysis to infer the units of of our constants c and g to get

[c] = LαT−1

[g] = E
2−n
2 T−

n
2L(n−2

2 )d+γn .

I actually can’t figure out how g was obtained. Using that the spectrum 〈akak′〉 =
n(k) δ(k − k′),

[nk] = ET.

Finally, for the energy dissipation per unit volume, J

[J ] = ET−1L−d.

Now, we can copy Kolmogorov’s argument and assume that in the inertial range, nk
depends on c, g, J and k only:

nk = cu gv Jw k−x

Using our dimensional analysis above,

ET =
(
LαT−1

)u (
E

2−n
2 T−

n
2L(n−2

2 )d+γn
)v (

ET−1L−d
)w
Lx

This gives undetermined system of 3 equations for 4 unknowns:(
2− n

2

)
v + w = 1

−u− n

2
v − w = 1

αu+

((
n− 2

2

)
d+ γn

)
v − dw = −x.

So, unlike for Navier-Stokes, where we used a Kolmagorov argument and got a 5
3
value

for x, we cannot do that here without additional constraints. One such constraint may
be that c (the dispersive part) and g (the nonlinear part) may be dependent physically
depending on the system. An example of this would be gravity waves where gravity
controls both c and g. However, in the NLS they are independent and this cannot be
done (c comes from dispersion and g from the scattering length).
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A priori, we have no way of knowing the exponent x. So, we may fix an x to get
equations for u, v, and w:

u =
2γn + (n− 1)d− (n− 1)x

(n− 1)α− γn

v = − 2α + d− x
(n− 1)α− γn

w =
(n− 2)x+ 2α− 2γn − (n− 2)d

2((n− 1)α− γn)
.

There are two choices for x that are special spectra that appear as limiting cases, namely

1. If we assume the wave spectrum dimension has no dependence on c, namely u = 0.
Then we get that

x =
2γn
n− 1

+ d.

This is called the Kolmogorov-Zakharov spectrum.

2. If we assume the wave spectrum dimension has no dependence on J , the dissipation
rate, namely w = 0. Then, we get that

x =
2γn − 2α

n− 2
+ d.

This is called the Generalized Phillips/Critical Balance spectrum. Although
it does not appear in the solution of any known equation, it is known and studied
by oceanographers in the case of gravity waves in the open ocean as it is believed
to be relevant.

Referring back to Equation 1.58, we can investigate the two time scales involved in the
problem using the fact that if nk ∼ k−x then ak ∼ k−

x+d
2 (Why?). There is one timescale

that results from the linear term of Equation 1.58 and one resulting from the nonlinear
term. For the former, we compare ∂tak to ωkak and see that the linear time scale is on
the order of τL ∼ k−α. For the latter, we compare ∂tak to the nonlinear interaction term
and see the nonlinear time scale is on the order of τNL ∼ k−γn+(n2−1)(x−d). Then, if we
assume τL � τNL as k →∞, the nonlinear evolution becomes slow going into the inertial
range and we have

τL

τNL

∼ k−α+γn−n−2
2

(x−d) � 1.

This is equivalent to assuming the nonlinearity is weak.
We can check if this condition is satisfied on the two spectrum above. For the

Kolmogorov-Zakharov spectrum, we have x = 2γn
n−1

+ d, and thus

τL

τNL

∼ k
γn
n−1
−α � 1

as k → ∞ except in the case that γn − (n − 1)α > 0, the breakdown criterion. If the
breakdown criterion holds, the Kolmogorov-Zakharov spectrum is inconsistent with weak
nonlinearity. Note that larger γn corresponds to stonger nonlinearity. For more details
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outlining the breakdown criterion, see [34]. For the Generalised Phillips’ Spectrum, we
have x = 2γn−2α

n−2
+ d, so τL

τNL
∼ 1. This explains the other name for this spectrum, the

critical balance spectrum. Although this spectrum is inconsistent with weak nonlinearity,
it is believed to be relevant for strong wave turbulence.

Next, we will restrict ourselves to the Kalmogorov-Zakharov Spectrum. In this case,
if forcing supplies energy at a constant rate, E ∼ Jt, then we can write the energy of the
system as an integral from the forcing scale kF to the dissipation scale kD:

E ∼
∫ kD

kF

ωknkk
d−1dk

∼
∫ kD

kF

kαk−
2γn
n−1
−dkd−1dk

∼
∫ kD

kF

k(α− 2γn
n−1)−1dk

∼ k
α− 2γn

n−1

D

If the exponent of k is positive (α − 2γn
n−1

> 0), we say the system has infinite capacity
since taking the turbulent limit where the dissipation scale goes to infinity results in
the system accommodating an infinite amount of energy. On the other hand, the more
interesting case is when α − 2γn

n−1
< 0 in which we say the system has finite capacity.

Then, the integral of of spectral energy density is finite as we send the kd →∞. Therefore,
if energy is growing linearly with respect to time, at some point there must be dissipation.
Therefore, the spectrum must have extended to infinity and in that sense we have "filled"
the Kalmogorov-Zakharov spectrum. Note that in order for us to have finite capacity,
γn must be sufficiently large and thus the cascade process to large k happens faster with
stronger nonlinearity and can reach infinity in finite time.

1.3 Equations for Correlation Functions

Just as we have Kolmogorov’s 4
5
law in the case of Navier-Stokes, we want something

similar in general, and it turns out this is possible and we will develop that in this
section. To simplify our assumptions, we will always assume our system is stationary,
isotropic, and statistically homogeneous. This last assumption means that the moments
of the wave field depend only on relative geometry, so for taking averages of a field a, it
does not depend on the base coordinate x. For example:

〈a(x) a(x+ r)〉 = M++
2 (r)

〈a(x) a(x+ r1) a(x+ r2)〉 = M+−−
3 (r1, r2),

Note that the subscript + and − only denote if it’s the field or its conjugate in the average.
Looking at our field via its Fourier transform shows that the Fourier space moments are
proportional to delta functions, evidence of spatial homogeneity. For the ones above,

〈a(k) a(k′)〉 = M̂++
2 (k,k′) δ(k + k′)

〈a(k) a(k′) a(k′′)〉 = M̂+−−
3 (k,k′,k′′) δ(k − k′ − k′′).
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The moment of most relevance to us is the second moment, which gives us the wave
spectrum:

〈a(k) a(k′)〉 = n(k) δ(k − k′). (1.59) def:wavespectrum

Moments, which summarize the properties of probability distributions, are in one to
one correspondence with cumulants, an alternative to moments. In our case, where fields
have mean 0(〈ak〉 = 0), we have the following correspondence between moments and
cumulants, where si = ±1:

〈as1(k1) as2(k2)〉 = Qs1s2
2 (k1) δ(s1k1 + s2k2),

〈as1(k1) as2(k2) as3(k3)〉 = Qs1s2s3
3 (k1,k2) δ(s1k1 + s2k2 + s3k3),

〈as1(k1) as2(k2) as3(k3) as4(k4)〉 = Qs1s2s3s3
4 (k1,k2,k3) δ(s1k1 + s2k2 + s3k3 + s4k4),

+Qs1s2
2 (k1)Qs3s4

2 (k3) δ(s1k1 + s2k2)δ(s3k3 + s4k4)

+Qs1s3
2 (k1)Qs2s4

2 (k2) δ(s1k1 + s3k3)δ(s2k2 + s4k4)

+Qs1s4
2 (k1)Qs2s3

2 (k2) δ(s1k1 + s4k4)δ(s2k2 + s3k3).

Here, we’ve written out to the fourth moment to see that you must go this far to distinguish
between moments and cumulants. The cumulants themselves measure deviations from
Gaussianity. For a Gaussian field, all cumulants of order larger than 2 are zero. In the
equation for the fourth moment, notice that we have our fourth order cumulant summed
with all possible pairings of our wave vectors. So, the fourth order cumulant is essentially
measuring how different the fourth order moment is from if we assumed we had a Gaussian
field. (On some level, this correspondence between moments and cumulants relates to
Feynman diagrams seen in the below Chapter).

As many of our example systems are Hamiltonian, we will consider a 3-wave Hamil-
tonian system of the form H = Q + U =

∫
Hk dk where Hk is the Hamiltonian density

written in phase space with a quadratic part Qk and interaction part Uk as

Hk = ωkaka
∗
k +

∫
dk1dk2W

k
k1k2

(
a∗kak1ak2 + aka

∗
k1
a∗k2
)
δkk1k2 . (1.60) eq-3waveH

Therefore, Hamilton’s equations are

ȧk = i
δH

δa∗k
= iωkak + i

δU

δa∗k
(1.61) eq-3W1

= iωkak + i

∫
dk1dk2

(
W k
k1k2

ak1ak2 δ
k
k1k2

+ 2W k1
kk2

ak1a
∗
k2
δk1kk2

)
. (1.62) eq-3W2

A generic issue whenever you replace a detailed description of a nonlinear equation
with a statistical description is that you have a closure problem. For example, when you
write an equation for the second moment, it will depend on the third moment:

∂t〈aka∗k′〉 = i

∫
dk1dk2

(
W k
k1k2
〈a∗k′ak1ak2〉 δkk1k2 + 2W k1

kk2
〈a∗k′ak1a∗k2〉 δ

k1
kk2

)
− i
∫
dk1dk2

(
W k′

k1k2
〈aka∗k1a

∗
k2
〉 δk′k1k2 + 2W k1

k′k2
〈aka∗k1ak2〉 δ

k1
k′k2

)
.

Similarly, writing an equation for the third moment with will similarly involve the fourth
moment. If we try to write equations for cumulants rather than moments, we run into
the same issue. In hydrodynamic turbulence, this problem is often addressed at the level
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of modelling, where some assumptions are imposed on the moments. For example, they
may assume the fourth moment is a function of the second and third. Lots of literature
on what these functions are and how they work. This is less true for Wave turbulence
rather than hydrodynamic turbulence.

For the Navier-Stokes equation, we had a constant flux relation expressed in equation
(1.35) that measured the transfer of energy through a given wave number k in the inertial
range in the limit of low viscosity and large time. We would like a parallel relation here.
However here, the quadratic part of the energy is not conserved but rather the entire
Hamiltonian. So, we may write an analogue of the scale resolved energy balance equation
(1.30):

∂t〈Hk〉+∇k · 〈J (H)
k 〉 = Fk −Dk

= 0 (in the inertial range).

In the steady-state, we further have a divergence free condition on the current of our
Hamiltonian density:

∇k · 〈J (H)
k 〉 = 0.

So, if we have a turbulent statistically stationary state, using equation (1.61) we have the
constraints:

0 = −∇k · 〈J (H)
k 〉 = 〈Ḣk〉

0 = ωk〈ȧka∗k〉+ ωk〈akȧ∗k〉+ 〈u̇k〉

0 = 〈u̇k − ȧk
δU

δak
− ȧ∗k

δU

δa∗k
〉.

More calculations?: Here, we want to deduce something about correlation functions by
expressing our current in terms of ak. Using these constraints, you can deduce conserva-
tion of energy in the inertial range expressed in terms of correlation functions of the wave
field:

0 = 2

∫
dk1dk2

[
W k
k1k2

Re〈a∗kȧk1ak2〉 δkk1k2 −W
k1
kk2

Re〈a∗k1 ȧkak2〉 δ
k1
kk2

]
. (1.63)

Note that although we have lots of cancellations, we still have a time derivative on ak1 .
This gives the following correlation function (assuming isotropy and using angle averag-
ing):

C(H)(k, k1, k2) =

∫
dΩ1dΩ2Re〈a∗kȧk1ak2〉 δkk1k2 .

We then have the following integral equation over scalar modulus of wave vectors:∫
dk1dk2(k1k2)d−1

[
W k
k1k2

C(H)(k, k1, k2)−W k1
kk2
C(H)(k1, k, k2)

]
= 0. (1.64) int-mod

This is a desirable way to see the flux as it is a term expressing the amount going into
a particular wave number minus a term expressing the amount leaving a particular wave
number.

Now, assuming scale invariance, we have scaling properties on our correlation function:

W hk
hk1 hk2

= hγW k
k1k2

C(H)(hk, hk1, hk2) = h−yC(H)(k, k1, k2).
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Using this, we may modify the equation (1.64) using a Zakharov-Kraichnan change of
variables to map the second term onto the first:

k1 =
k2

k′1
, k2 =

kk′2
k′1

,

giving ∫
dk1dk2(k1k2)d−1W k

k1k2
C(H)(k, k1, k2)

[
1− k

k1

γ+3d−y]
= 0.

Therefore, looking at the term in brackets, we must have y = γ + 3d.
Using this analysis, we can see why there is no Wave Turbulence analogue of the

Kalmogorov’s 4/5 law. We derived that γ + 3d scaling is exact without any assumptions
of weak nonlinearity or closure. However, we expressed everything in phase space and
have no local x representation. Also, our Hamiltonian density Hk is not quadratic.

However, we may look at one particular example and get an analogue of the Kalmogorov’s
4/5 law. For the Föppl-von Kármán equations (1.47 - 1.49), the Hamiltonian is quadratic
and the field equations are local in x-space. It turns out, we have the Düring and
Krstulovic 1-law here, as seen in [18]. In particular, they showed that in the inertial
range,

〈J [δχ, δζ] δζ̇〉 · r̂ = −ε r, (1.65)

where δζ = ζ(x+ r)− ζ(x). Note that you can show

N [f, g] = −∇ · J [f, g]

with
J [f, g] =

(
fygyx − fxgyy
fxgxy − fygxx

)
.

So, J is cubic in the fields, and 1-law correlation function is quartic in the amplitude
variables. This is consistent with the leading interaction being 4-wave. This is only result
like this for strong wave turbulence.

1.4 Wave Kinetic Equations via Multiple Scale Analy-
sis

The aim of this section is to derive the wave-kinetic equation (WKE) via a multiple scale
analysis. In particular, the WKE is an effective equation to describe the evolution of
the wave-spectrum, valid on a certain time-scale. Recall that the wave spectrum n(k),
defined in (1.59), relates to the second moment. Our main goal is to (formally) justify
the following

Claim: when the nonlinearity is weak, the long time behaviour of nk(t) is determined
by the wave kinetic equation:

∂nk1
∂t

= π

∫ ∣∣W k1
k2k3

∣∣2 (nk2nk3 − nk1nk2 − nk1nk3)δ
ωk1
ωk2

,ωk3
δk1k2,k3 dk2dk3

+ π

∫ ∣∣W k2
k1k3

∣∣2 (nk2nk3 + nk1nk2 − nk1nk3)δ
ωk2
ωk3

,ωk1
δk2k3,k1 dk2dk3 (1.66) eq:3WKE

+ π

∫ ∣∣W k3
k1k2

∣∣2 (nk2nk3 − nk1nk2 + nk1nk3)δ
ωk3
ωk1

,ωk2
δk3k1,k2 dk2dk3,
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where we recall the notation introduced in (2) for the δ.
We will only sketch the derivation for the BPV equation since it is (slightly) less messy.

Recalling (1.55)-(1.57), the equation we consider is

∂ak
∂t

+ i ωk ak =

∫
W k
k1 k2

ak1 ak2 δ
k
k1 k2

dk1dk2. (1.67) eq-CHMk

It is convenient to introduce interaction variables that incorporate the linear dynamics
and a formal small parameter ε:

ε bk = ak ei ωk t, (1.68) eq-interactionRepresentation

in which the equation (1.67) takes the form

∂bk
∂t

= ε

∫
W k
k1 k2

bk1 bk2 δ
k
k1 k2

eiΩ
k
k1 k2

t dk1dk2, (1.69) eq-CHMk3

where we defined the shorthand notation

Ωpq r = ωp − ωq − ωr. (1.70) def:Omres

1.4.1 Asymptotic expansions and approximations

Defining the interaction variables bk with a parameter ε is equivalent to assume a weak
nonlinearity regime. In order to exploit this assumption, we aim at solving (1.69) pertur-
batively, namely

bk(t) = b
(0)
k (t) + ε b

(1)
k (t) + ε2 b

(2)
k (t) + . . . (1.71)

Usually, in perturbation theory, a first non-trivial answer can be already obtained to first
order in ε, however in this case it turns out to be necessary to go to second order in ε.
This issue is the main source of the algebraic complexity of the computations we are going
to sketch below.

The first few terms in the expansion can be computed explicitly (Add some computa-
tion?) and are

b
(0)
k (t) = Bk (1.72) eq-order0

b
(1)
k (t) =

∫
W k
k1 k2

Bk1 Bk2 δ
k
k1 k2

∆(Ωkk1 k2 , t)dk1dk2 (1.73) eq-order1

b
(2)
k (t) = −2

∫
W k
k1 k2

W k1
k3 k4

Bk2 Bk3 Bk4 δ
k
k1 k2

δk1k3 k4 E(Ωk2 k3 k4k ,Ωk1 k2k , t)dk1dk2dk3dk4

(1.74) eq-order2

check for typos in the equations above where the Bk are constants and

∆(x, t) =

∫ t

0

ei x τ dτ =
ei x t − 1

i x
(1.75) eq-DeltaIntegral

E(x, y, t) =

∫ t

0

∆(x− y, τ) ei y τdτ. (1.76) eq-EIntegral

Notice that all the time-dependence is in the integrals.
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We are interested in studying the limiting case t = +∞, however, the integrals above
are not well defined in this scenario. To overcome this problem, we consider

∆ε(x, t) =

∫ t

0

ei x τ−ετ dτ =
eixt−εt − 1

ix− ε
= i

1− eixt−εt

x+ iε
. (1.77) eq-DeltaIntegraleps

Clearly, ∆ε(x, t) −−→
ε→0

∆(x, t), but notice that

lim
t→+∞

∆ε(x, t) = i
1

x+ iε
(1.78)

Thus, taking the limits in the correct order and interpreting them in the distributional
sense, from the Sokhotski–Plemelj Theorem add at least the heuristic proof in appendix?
we get

lim
t→+∞

∆(x, t) := lim
ε→0

lim
t→+∞

∆ε(x, t) = πδ(x) + iP
(

1

x

)
, (1.79) eq:SokPlem

where P is the Cauchy principal value distribution add definition in appendix?.
At this point we begin to see why resonant interactions, i.e. when x = 0, play such

a central role in weak wave turbulence. For instance, the term b
(1)
k (t), see (1.73), in the

long-time limit concentrates on the resonant sets:

ωk = ωk1 + ωk2 . (1.80)

In addition, the other δ function impose that k = k1 + k2. Likewise for b(2)
k (t), one can

show that

lim
t→+∞

E(x, y, t) =

(
πδ(x) + iP

(
1

x

))(
πδ(y) + iP

(
1

y

))
(1.81)

Shall we comment more about this limit? The product of two distributions does not make
sense, what do we mean here? Can we deduce a more precise version as above?

1.4.1.1 Averaging

Combining (1.72)-(1.74) with the definition of the wave spectrum (1.59), to order ε2 we
find that some more computation here?

np(t) δ
p
p′ = 〈BpBp′〉 (1.82) eq-perturbativenk

+ ε

∫
W p′

k1 k2
〈BpBk1 Bk2〉 δ

p′

k1 k2
∆(Ωk1 k2p′ , t)dk1dk2

+ ε

∫
W p
k1 k2
〈Bp′Bk1 Bk2〉 δ

p
k1 k2

∆(Ωpk1 k2 , t)dk1dk2

− 4 ε2
∫
W p
k1 k2

W k1
k3 k4

Re
[
〈Bp′ Bk2 Bk3 Bk4〉

]
δpk1 k2 δ

k1
k3 k4

E(Ωk2 k3 k4p ,Ωk1 k2p , t)dk1dk2dk3dk4

+ ε2
∫
W p
k1 k2

W p′

k3 k4
〈Bk1 Bk2 Bk3 Bk4〉

δpk1 k2 δ
p′

k3 k4
∆(Ωpk1 k2 , t) ∆(Ωk3 k4p′ , t)dk1dk2dk3dk4.
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Taking into account that 〈Bk〉 = 0, using the fact that bk = b−k and taking si = ±1, one
can write a general third or fourth order correlation function as:

〈Bs1k1Bs2k2Bs3k3〉 =Q
(3)
s1k1 s2k2 s3k3

(1.83) eq-M3

〈Bs1k1Bs2k2Bs3k3Bs4k4〉 =nk1 nk2 δ
s1k1
s3k3

δs2k2s4k4
+ nk1 nk3 δ

s1k1
s2k2

δs3k3s4k4
(1.84) eq-M4

+ nk1 nk2 δ
s1k1
s4k4

δs2k2s3k3
+Q

(4)
s1k1 s2k2 s3k3 s4k4

(1.85)

where Q(3) and Q(4) are the appropriate third and fourth order cumulants of the field Bk.
We now have to introduce a the so called Random phase "approximation" or Wick

closure, namely we neglect Q(3)
s1k1 s2k2 s3k3

and Q(4)
s1k1 s2k2 s3k3 s4k4

.

Remark 3. The Wick closure cannot be really considered as an approximation since it
is not clear even at a formal level why one should be able to neglect those terms. In fact,
there is no guess of what should be the correction to this approximation.

Are we somehow implicitly assuming that if we start with a random Gaussian initial
data it will remain Gaussian also at later times?

Thanks to theWick closure, we can compute the averages in (1.82). Denoting 〈BpBp′〉 =

n
(0)
p and integrating out the two delta functions coming from (1.84), we get

np(t) δ
p
p′ =n(0)

p δpp′ (1.86) eq-perturbativenk2

+ 2 ε2
∫
W p
k1 k2

W p
k1 k2

δpk1 k2 nk1 nk2 ∆(Ωpk1 k2 , t) ∆(Ωk1 k2p , t) δpp′dk1dk2

− 8 ε2
∫
W p
k1 k2

W k1
pk2

δpk1 k2 np nk2 Re
[
E(0,Ωpk1 k2 ; t)

]
δpp′dk1dk2,

where we have also used the symmetries of W p
k1 k2

to group similar terms together. Add
some computation here?

1.4.1.2 The wave kinetic equation for the BPV

Notice that the averaging procedure introduced some singular integrals that diverge as
t→∞. For large time, they behave as add REF [Newell, 1968]:

∆(x; t) ∆(−x; t) ∼ 2π tδ(x) + 2P
(

1

x

)
∂

∂x

E(0, x; t) ∼
[
π δ(x) + iP

(
1

x

)]
t− i

[
πδ(x) + iP

(
1

x

)
∂

∂x

]
,

It seems to me that the computation of this limit may be analogous to the limit of E.
See if it is worth trying to make some more explicit computation.

We now see that our expansion breaks down at t ∼ ε−2:

np(t) = n(0)
p − (ε2 t)S

[
n0
k

]
+ ε2 [terms bounded in t], (1.87) eq-perturbativenk3

where the divergent (secular) part is

S
[
n0
k

]
= 4π

∫
W p
k1 k2

W p
k1 k2

δpk1 k2 nk1 nk2 δ(Ω
p
k1 k2

)dk1dk2

− 8π

∫
W p
k1 k2

W k1
pk2

δpk1 k2 np nk2 δ(Ω
p
k1 k2

)dk1dk2.
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Remark 4. The divernces concentrate on the resonant curves.
The term (ε2t)S[n0

k] may give rise to a secular growth, but this mechanism it is not
believed to persist for long times. One possibility to overcome this problem is to take a
step back and assume that n(0)

p varies slowly on the nonlinear timescale T2 = ε2t. We then
treat T2 as an additional independent variable so that we have n(0)

p (t, T2). In our case, we
assume that n(0)

p is constant with respect t so we get:

dn
(0)
p

dt
=
∂n

(0)
p

∂t
+
∂n

(0)
p

∂T2

dT2

dt
= ε2

∂n
(0)
p

∂T2

(1.88)

Differentiating the equation (1.87) with respect to t, we have

dnp
dt

= ε2
∂n

(0)
p

∂T2

− ε2 S
[
n0
k

]
+ ε2

d

dt
[terms bounded in t]. (1.89)

Therefore, we conclude that the expansion is consistent to times ∼ ε4t if

∂n
(0)
p

∂T2

= S
[
n0
k

]
(3-wave kinetic equation) (1.90) eq-consistency3W

Is it actually what we had at the claim at the beginning of this section?
Remark 5. The kinetic equation can be seen as a consistency condition that must be
satisfied by the second moment to account for the effect of resonant interactions on the
timescale of ε2t.

The procedure to derive the WKE presented here is fundamentally non-perturbative.
In particular, solution of the kinetic equation adds up an infinite number of terms in the
original regular perturbation expansion but we do not which are the relevant terms to
consider do someone know?.

We also point out that, in principle, the method of multiple scales can be extended to
higher orders to describe behaviour on longer timescales, ε4t etc. However, it is not even
guaranteed that the solution of the kinetic equation is consistent with the assumption of
weak nonlinearity/separation of timescales used in this derivation.

1.4.1.3 Nonlinear frequency correction

We focused thus far on the the correlation function 〈a(k) a(k′)〉. What about the expan-
sion of 〈a(k) a(k′)〉? In this case, the iωkak terms do not disappear at leading order so a
“fast” time dependence remains. We could carry on computations analogous to the one
in previous subsection (with more or less the same level of algebraic complexity) and find
secular terms on the εt timescale in the expansion. However, the consistency condition
for the removal of these secular terms is less complex and can be solved explicitly by
correcting the frequency as

ωk → ωk + Ωε[nk]. (1.91)

in the notes there wasn’t the ε dependence on Ω. I have included it because in general it
depends on ε.

Ωε[nk] ∼ εq
∫ ∣∣W k

k1k2

∣∣2 nk1δkk1k2δ(Ωkk1k2)dk1dk2 (1.92)

and q can be explicitly computed. This nonlinear frequency correction should have some
relation with the removal of "trivial" resonances done in Bianchini’s lecture. Check this
and add maybe some reference to that chapter.
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1.4.2 The asymptotic closure argument of Newell

In deriving the kinetic equation we assumed the Wick closure. The asymptotic closure
argument shows that the Wick closure arises naturally from the dynamics for long times is
this the argument of Newell or do we mean that the previous approximation is natural?.
In REF Newell? it was proposed the following procedure to avoid the formal random
phase approximation:

• Go back to equation (1.86) but do not neglect Q(3)
s1k1 s2k2 s3k3

and Q(4)
s1k1 s2k2 s3k3 s4k4

.

• Write perturbative expansions for Q(3)
s1k1 s2k2 s3k3

(t) and Q(4)
s1k1 s2k2 s3k3 s4k4

(t) and iden-
tify any additional secular terms that should be included in the consistency condition
(1.90).

• No new secular terms appear that are not already accounted for in the consistency
conditions for 〈a(k) a(k′)〉 (kinetic equation) and 〈a(k) a(k′)〉 (nonlinear frequency
correction).

Remark 6. We claim that this finding is general. More precisely, the dynamics generates
correlations in such a way that the secular (divergent) terms appearing in the higher order
cumulants are functions of lower order cumulants only.

This does not say that there is no closure problem. Rather, the asymptotic consistency
conditions for the removal of divergences from perturbation theory (for all cumulants)
are closed. However, it may provide useful insights for mathematical treatments of wave
kinetics. We stress again that accounting for the nonlinear frequency correction is essential
to asymptotic closure.

The derivation of the WKE related to the NLS has been achieved by Deng and Hani
in [16] and we mention also the previous contributions [3, 6]. For a multi-d KdV type
equation we refer to the work of Staffilani and Tran [47].

1.5 Stationary Solutions of the Wave Kinetic Equation

In the previous section we derived the 3-wave kinetic equation for the BPV. The general
symmetric form a 3-wave kinetic equation is

∂tnk1 = S[nk1 ] =

∫
R2d

(Rk1k2k3 −Rk2k3k1 −Rk3k1k2) dk2dk2 (1.93) eq-S

where

Rk1k2k3 = 4π
∣∣W k1

k2k3

∣∣2 (nk2nk3 − nk1nk3 − nk1nk2)δ
ωk1
ωk2

,ωk3
δk1k2k3 . (1.94) def:Rk

In this section, we aim at investing the stationary solutions of (1.93). First observe that
the (quadratic) energy and wave action, defined respictively as

E =

∫
ωknkdk and N =

∫
nkdk, (1.95)

are (formally) conserved quantities of (1.93). In fact, this a direct consequence of the
conservation of energy and momentum at the microscopic level which is enconded in the
two delta functions appearing in (1.94).
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Remark 7. E is a conserved quantity for the 3-WKE but not necessarily for the original
dynamical equation.

To actually find explicit stationary solutions, we will only consider isotropic systems
for which

ωk = ckα.

some REF to justify that isotropic systems are also physically relevant in some cases?.
Under the isotropy assumption, it is clearly more convenient to average with respect the
angular variables. Denoting Ω(d) as the integration of the solid angle, i.e. the surface area
of the d-dimensional sphere, we rewrite N as

N = Ω(d)

∫ ∞
0

nkk
d−1 dk

dω
dω =

Ω(d)

α
c−

α
d

∫ ∞
0

nω ω
d−α
α dω

:=

∫ ∞
0

Nω dω. (1.96) def:Nav

We call Nω the angle-averaged frequency spectrum. This can be seen as the analogue of
the spectral energy density (1.16) introduced in the isotropic hydrodynamical turbulence
framework.

Arguing analogously for the energy, we find that

E =

∫ ∞
0

ωNωdω. (1.97) def:Eav

Remark 8. In terms of Nω, the integrals in the kinetic equation become one-dimensional
integrals of ω’s rather than d-dimensional integrals over k’s.

Integrating (1.93) in the angular variables, we find the following kinetic equation in
the frequency space

∂Nω1

∂t
= S1[Nω1 ] + S2[Nω1 ] + S3[Nω1 ] (1.98) eq-3WKEB

where

S1[Nω1 ] =

∫
K1(ω2, ω3)Nω2Nω3δ

ω1
ω2,ω3

dω2dω3

−
∫
K1(ω3, ω1)Nω1Nω3δ

ω2
ω1,ω3

dω2dω3 (1.99) eq-S1

−
∫
K1(ω1, ω2)Nω1Nω2δ

ω3
ω1,ω2

dω2dω3,

and K1(ω1, ω2) is a homogeneous function of degree

λ =
2γ − α
α

. (1.100) def:lambdascal

The second term is defined as

S2[Nω1 ] = −
∫
K2(ω2, ω3)Nω1Nω2δ

ω1
ω2,ω3

dω2dω3

+

∫
K2(ω3, ω1)Nω2Nω3δ

ω2
ω1,ω3

dω2dω3 (1.101) eq-S2

+

∫
K2(ω1, ω2)Nω1Nω3δ

ω3
ω1,ω2

dω2dω3
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with

K2(ω1, ω2) = K1(ω1, ω2)

(
ω1 + ω2

ω2

)α−d
α

. (1.102)

Finally we have

S3[Nω1 ] = −
∫
K3(ω2, ω3)Nω1Nω3δ

ω1
ω2,ω3

dω2dω3

+

∫
K3(ω3, ω1)Nω1Nω2δ

ω2
ω1,ω3

dω2dω3 (1.103) eq-S3

+

∫
K3(ω1, ω2)Nω2Nω3δ

ω3
ω1,ω2

dω2dω3,

with

K3(ω1, ω2) = K1(ω1, ω2)

(
ω1 + ω2

ω1

)α−d
α

. (1.104)

Is it there a more symmetric way to write S1, S2, S3 and write down just one single term
Si?

There are some advantages in this long-form representation of the collision integral
in (1.98). Firstly, we have only a single scaling parameter, λ, instead of 3 (γ, α and d).
Secondly, S1, S2 and S3 have natural physical interpretations:

• S1[Nω1 ] represents a forward transfer mechanism. Indeed, the term with a posi-
tive sign in (1.99) requires that ω1 = ω2 + ω3, meaning that we generate a higher
frequency level ω1 from two lower frequency ones ω2, ω3. The terms with a nega-
tive sign in (1.99) accounts for the natural backscatter involved in the process. In
particular, we can loose some portion of ω1 to create other particles. See figure (1.6)

• S2[Nω1 ], S3[Nω1 ] instead accounts for the backscatter mechanism. The first term
with a negative sign in (1.101)-(1.103) is telling us that we loose an entire ω1 to
generate ω2, ω3. Analogously as before, also here we have the natural counterpart
of the forward transfer mechanism associated to the backscatter. See figure (1.6).

Figure 1.6: Forward transfer and bakcscatter processmaybe the figure should be redone
with ω1, ω2, ω3fig:fortran

sligthly reorganized w.r.t. slides for clearness of discussion.
The parameter λ is related to a phase transition phenomenon (a sort of or exactly?),

where we distinguish the following cases:

• Infinite capacity: λ < 1. Finite capacity: λ > 1.

• Breakdown at small scales: λ > 3. Breakdown at large scales: λ < 3.
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1.5.1 The Kolmogorov-Zakharov spectra

From the scaling laws dictated by (1.100) (and properties of the kernels and the delta
function), one can deduce the following exact solutions to (1.98):

• Kolmogorov–Zakharov: Nω = cKZ

√
J ω−

λ+3
2 .

• Generalised Phillips (critical balance): Nω = cPω
−λ.

• Thermodynamic: Nω ∼ ω−2+ d
α .

In analogy with the terminology in hydrodynamic turbulence, the equilibrium states above
are also called spectra. Supposing that K1(ωi, ωj) has asymptotics K1(ωi, ωj) ∼ ωµi ω

ν
j

with µ+ ν = λ for ω1 � ω2, the KZ spectrum is called local if

• µ < ν + 3 and xKZ > xT is this inequality asking that (λ+ 3)/2 < 2− d/α? Maybe
better stating like this because we never defined xKZ , xT before.

Proving that the exact solutions given above are indeed stationary states it is not always
straightforward. Hence, we outline how to obtain the KZ-spectra as an example.

First consider the S1[Nω] term only. We seek a stationary solution Nω = cKZ ω
−x such

that S1[Nω] = 0:

0 = c2
KZ

∫
K1(ω2, ω3) (ω2ω3)−xδω1

ω2,ω3
dω2dω3

− c2
KZ

∫
K1(ω3, ω1) (ω1ω3)−xδω2

ω1,ω3
dω2dω3 (1.105) eq-S1C

− c2
KZ

∫
K1(ω1, ω2) (ω1ω2)−xδω3

ω1,ω2
dω2dω3.

We now apply the nonlinear changes of variables to the second and third integrals, also
known as Zakharov-Kraichanan transformations :

(ω2, ω3)→
(
ω2

1

ω′2
,
ω1ω

′
3

ω′2

)
, (ω2, ω3)→

(
ω1ω2

ω3

,
ω2

1

ω3

)
. (1.106) eq-ZT1

These change of variables are exploiting the fact that the system is invariant under trans-
lation, rotation and dilation. Make REF to Laure’s lectures where it is explained better
how to guess the change of variables from these properties. See Figure ?? for a graphical
representation of the ZK-transformations. The Jacobians of the change of variables in
(1.106) are (

ω1

ω2

)3

,

(
ω1

ω3

)3

respectively. Exploiting the scaling properties of K1, notice that, under the change of
variables, we have

K1(ω1, ω3)→ K1

(
ω1,

ω1ω
′
3

ω′2

)
=

(
ω1

ω′2

)λ
K(ω′2, ω

′
3).
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fig:ZKtran

Figure 1.7: Graphical representation of Zakharov-Kraichnan transformations. picture to
make on tikz

Arguing analogously for the δω2
ω1,ω3

, one can show that the supports end concentrated on
δω1
ω2,ω3

. add computation of this. The result is then a single integral,

0 = c2
KZ

∫
K1(ω2, ω3) (ω2ω3)−xδω1

ω2,ω3
ωλ+2−2x

1

[
ω2x−λ−2

1 − ω2x−λ−2
2 − ω2x−λ−2

3

]
dω2dω3.

(1.107) eq-S1AfterZT

It is now easy to see that the right hand side vanishes when 2x−λ−2 = 1 (or 2x−λ−2 = 0).
This yields the KZ exponent (for the flux of energy when we equate to 1, flux of particles
when we equate to 0):

x =
λ+ 3

2
. (1.108)

Identical analysis applies to S2 and S3 and we omit the computations.
The equilibrium exponent x = α−d

α
+ 1 appears only in the sum S1 +S2 +S3 (detailed

balance) I don’t understant this comment
It is also of interest to compute the Zakharov constant cKZ . In order to do so, we first

define the the energy flux Jω at frequency ω as

∂t (ωNω) =
3∑
i=1

ω Si[Nω] := −∂ωJω. (1.109) eq-energyConservation

Remark 9. The KZ exponent can be deduced also by imposing that Jω is scale invariant
if it has to be constant. If it is of interest, I could add a little computation of that. It
may be nice since you can guess the KZ exponent by a physical argument rather than a
"magical" transformation.

Arguing as done to obtain (1.107), on power law spectrum Nω = cω−x, we have

∂ωJω = −c2 ωλ−2x+2 I(x), (1.110) eq:fluxen

where we define

I(x) =

∫ 1

0

[
K1(u, 1− u) (u(1− u))−x (1.111)

−K2(u, 1− u)u−x −K3(u, 1− u) (1− u)−x
][

1− (1− u)2x−λ−2 − u2x−λ−2
]
du.
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Integrating once (1.110) gives

Jω = −ωλ−2x+3 c2I(x)

λ− 2x+ 3
. (1.112)

Since the KZ-spectra is a stationary solution, if we send x→ xKZ = λ+3
2

we expect that
Jω → J with J being constant. The latter is then computed as

J = lim
x→KZ

−ωλ−2x+3 c2
KZI(x)

λ− 2x+ 3
=

1

2
c2
KZ

dI

dx

∣∣∣∣
x=xKZ

, (1.113)

where in the last identity we used L’Hôpital’s rule. The K-Z constant is therefore

cKZ =

√
2 J

dI

dx

∣∣∣∣−1

x=xKZ

(1.114) eq-KZconstant

1.5.1.1 The (spectral) locality criterion

The analysis performed in the previous section assumes that the collision integral is con-
vergent on the KZ spectrum. This is however not immediate and needs to be checked
a-posteriori. For this, we need to know more informations on the kernels and their asymp-
totic. So consider the following models:

K(ω1, ω2) =
1

2
[ωµ1ω

ν
2 + ων1ω

µ
2 ] ,

K(ω1, ω2) = min(ω1, ω2)µ max(ω1, ω2)ν ,

where we require µ+ ν = λ.
The strategy is the following: first use the δ-function to integrate out ω3. Then,

determine the integrability of integrand as ω2 → 0 and ω2 →∞. Following this procedure,
one can show [7] that the collision integral is convergent provided

x > 1 +
α− d
α

, µ < x < ν + 3. (1.115) bd:splc

These conditions, called the spectral locality criteria, have a very important physical
meaning: they tell us when the KZ spectrum is universal, i.e. independent of forcing and
dissipation in the turbulence limit.

For the KZ-specta, the spectral locality criteria impose two requirements: xKZ must
be steeper than the equilibrium spectrum and an interval of locality, [µ, ν+3], must exist,
i.e. µ < ν + 3. When an interval of locality exists, the KZ exponent is at the midpoint.

Remark 10. The spectral non-locality does not present a problem for the applicability of
the kinetic equation. However forcing and/or dissipation must be included explicitly.

1.6 Numerical and Experimental Evidence

In this section, we look at a few examples in which we can actually see wave turbulence,
in particular the Kolmogorov-Zhakarov spectrum. This is somewhat surprising for several
reasons:



1.6. Numerical and Experimental Evidence 31

Figure 1.8: Experimental Observations of Weak Capillary Wave Turbulence
micrograv

1. The asymptotic limit in which the Kinetic Equation arises is not mathematically
consistent.

2. Even if the Kinetic Equation is consistent, the system of interest is not necessarily
in the relevant regime (weak nonlinearity, long time) for it to apply.

3. Even if the Kinetic Equation is consistent and applicable, the Kolmogorov-Zakarhov
spectrum may not be local.

4. Even if the Kinetic Equation is consistent and applicable and the Kolmogorov-
Zakharov spectrum is local, the exponent λ+3

2
could be inconsistent with the as-

sumption of weak nonlinearity as ω →∞.

The best experimental evidence of Wave Turbulence occurs in the case of Capillary
Wave Turbulence. However, the effects of gravity waves limit the scaling range available
under normal conditions. So, experiments performed in space on an A300 Airbus in
microgravity generated Figure 1.8, taken from [19]. Not sure if we can have these pictures,
but adding them now. These experiments showed that there are in fact 2 regimes, one at
low frequency where gravity dominates, and the other at high frequencies where capillarity
dominates. Ignoring the lower frequencies, there are in fact clean power laws giving
the power spectrum density in terms of the frequency. The power law is present in
multiple types of forcing, so it appears from this experimentation that the power law is
not dependent on details of the forcing.

On the numerical side, it is difficult to realise "pure" weak wave turbulence. For
example, some difficulties arise from the fact that you need to ensure that your numerical
grid has sufficient resonances and prevent the boundaries from introducing effects. The
Majda-McLaughlin-Tabak (MMT) model proposes a toy model of wave turbulence similar
to the NLS with the dispersive term modified so that the time steps can be less fine:

i∂tψ = L(1/2)ψ + σψ |ψ|2 + FD,
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Figure 1.9: Simulations in 1D (top row) and 2D (bottom row) from Sheffield & Rumpf
(2017)

MMT
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where L(1/2)ψ ∼
√
kψ̂k and σ = ±1. In this case, the Kolmogorov-Zakharov spectrum is

then
nk = cKZJ

1
3k−d.

Some numerics using the MMTmodel in [42] give the predicted scalings both in dimensions
1 and 2 and are shown in Figure (1.9). Note that the slopes in the figures do not depend
on the sign of the nonlinearity, which is consistent with the kinetic limit. They used
other testable predictions involving the closure mechanism for the 4th order correlation
function:

∂tnk = 2σ

∫
ImJ123kδ

k1k2
k3k

dk123,

where
J123kδ

k1k2
k3k

= 〈ψ̂k1ψ̂k2ψ̂∗k3ψ̂
∗
k〉.

Assuming that the Kinetic Equation holds for this equation, then it should be the case
that

ImJ123k ∼ 2πσF123kδ(Ω
k1k2
k3k

),

where

F123k = nk1nk2nk3 + nk1nk2nk − nk1nk3nk − nk2nk3nk.

Therefore, some testable predictions include:

• ImJ123k being sharply peaked at resonances.

• sgn ImJ123k = sgnσ.

• ImJ123k ∼ n3.

• the time evolution of ImJ123k from uncorrelated initial state.

A sampling of results achieved from trying to observe these predictions is in Figure (1.10).
Here, they take k1 = 49, k2 = −4, k3 = 9 with k = 36 to satisfy resonance. They found
that at initial time, the 4th order correlation function is 0, but later it becomes nonzero.
The strong nonzero part does appear on the resonant curve, and peaks negatively with
the sign of σ. Also, the time evolution of that correlation starts at 0 and builds with
quasi-guassianity emerging.

1.7 The Dual Cascade

This section may be somehow linked also to other lectures, e.g. Haynes
In this section, we consider a prototypical example where a dual cascade can be ob-

served: the 2D Navier-Stokes equations which, written in terms of the stream-function
ψ(x, y, t) = ψ(x, t), read as

∂∆ψ

∂t
+ (v · ∇)∆ψ = ν∆(∆ψ), x ∈ R2, t ≥ 0 (1.116) eq:NS2D

v = ∇⊥ψ, (1.117)

where ∇⊥ = (−∂y, ∂x). When ν = 0 we have the Euler equations and we observe the
conservation of two quantities:
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Figure 1.10: Validation of Wave Turbulence Closure Mechanism from Sheffield & Rumpf
(2017)

closurepred

• Energy: E = 1
2

∫
|∇ψ|2 dx = 1

2

∫
|v|2 dx =

∫
E(k)dk.

• Enstrophy: Ω =
∫
|∆ψ|2 dx =

∫ ∣∣∇⊥ · v∣∣2 dx =
∫
k2E(k)dk.

We again assumed isotropy to the define the spectral energy density E(k). Let us verify
that the two quantities defined above are indeed conserved. Multiplying (1.116) by ψ,
integrating in space and performing an integration by parts we get

1

2

d

dt

∫
|∇ψ|2dx =

∫ (
∇⊥ψ · ∇∆ψ

)
ψ dx = −

∫
∆ψ

(
∇⊥ψ · ∇ψ

)
= 0, (1.118)

which imply the conservation of the energy. Analogously, the conservation of the enstro-
phy readily follows multiplying (1.116) by ∆ψ.

Other systems where we have the conservation of the energy and (at least) another
quantity are, for example, the following:

• Nonlinear Schrodinger equation: conservation of energy and mass.

• Potential vorticity equation: conservation of energy and potential enstrophy.

• Surface water waves: conservation of energy and wave action.

the following remark was not given in the lectures

Remark 11. For the 2D Euler equations we actually have an infinite set of conserved
quantities. Indeed, due to the transport structure of (1.116) when ν = 0, one has the
conservation of ∫

F (∆ψ)dx, (1.119)

for any continuous function F .
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Having the conservation of energy and enstrophy at hand, we want to investigate the
direction of the cascading mechanism for these two quantities. Namely, will the energy
(enstrophy) move towards small or large scales? Fjørtoft [21] discovered that the two
invariants must be transferred in the opposite direction in the frequency space.

Let us make some preliminary observations to deduce the direction of the cascade. Let
kf be a reference frequency and kR, kL higher and lower frequencies respectively (right
and left). Denote

E(kf ) = J, E(kR) = JR, E(kL) = JL.

Assume that the energy split into high and low frequencies as

J = JR + JL, (1.120)

where JR, JL are the energy fluxes. This imply that the enstrophy satisfy

k2
fJ = k2

RJR + k2
LJL := JΩ

R + JΩ
L , (1.121)

where JΩ
R , J

Ω
L are the enstrophy fluxes. Solving the equations in terms of the energy fluxes

we get

JL =
k2
R − k2

f

k2
R − k2

L

J, JR =
k2
f − k2

L

k2
R − k2

L

J. (1.122) eq:energyflux

In terms of enstrophy fluxes the above identities read as

JΩ
L = k2

L

k2
R − k2

f

k2
R − k2

L

J, JΩ
R = k2

R

k2
f − k2

L

k2
R − k2

L

J. (1.123) eq:enstrophyflux

From (1.122)-(1.123) we deduce that

• JL → J and JR → 0 as kR →∞.

• JΩ
L → 0 and JΩ

R → k2
fJ as kL → 0.

Thus, the energy cannot concentrate in a very high-frequency regime whereas the en-
strophy cannot concentrate in a very low-frequency state. This suggests that we should
observe an inverse energy cascade and a direct enstrophy cascade, see Figure 1.11. How-
ever, these scalings make the “pure" dual cascade very difficult to realise.

Let us now present an elegant formulation of Fjørtoft argument given in Nazarenko’s
monograph [33], which is rigorous for unforced and inviscid fluids. Define the energy and
enstrophy frequency-centroids (or center of mass) as

kE =

∫∞
0
kE(k)dk

E
, kΩ =

∫∞
0
k3E(k)dk

Ω
, (1.124) def:kcentr

where E and Ω are the total energy and enstrophy. The quantities kE and kΩ can be
considered as the mean frequency-scale at which energy and enstrophy are respectively
concentrated. Appealing to the Cauchy-Schwarz inequality we obtain

(∫ ∞
0

kE(k)dk

)2

=

(∫ ∞
0

(k
√
E(k)dk)(

√
E(k)dk)

)2

≤
(∫ ∞

0

k2E(k)dk

)(∫ ∞
0

E(k)dk

)
= ΩE,
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Figure 1.11: Schematic picture of a dual cascade
fig:dualcascade

meaning that

kE ≤
√

Ω

E
. (1.125) eq-Ecentroid

Arguing similarly for the enstrophy, we have

Ω2 =

(∫ ∞
0

k2E(k)dk

)2

=

(∫ ∞
0

(k
3
2

√
E(k)dk)(

√
kE(k)dk)

)2

≤
(∫ ∞

0

k3E(k)dk

)(∫ ∞
0

kE(k)dk

)
= (ΩkΩ)(EkE).

From the inequality above we deduce that

kΩkE ≥
Ω

E
. (1.126) eq-Qcentroid

Therefore, combining (1.125) and (1.126) we get

kE ≤
√

Ω

E
, kΩ ≥

√
Ω

E
, kΩkE ≥

Ω

E
.

Thus, we obtain the following:

• Thanks to (1.125), the energy cannot accumulate on arbitrarily large frequencies

• From (1.126), if kE decreases then kΩ must increase and kE ≤ kΩ. To have an
inverse cascade of energy we must have direct cascade of enstrophy.

• kΩ is bounded from below, meaning that the enstrophy will not be seen at large
spatial scales.

The following is from Nazarenko’s book, not included in lecture notes However, from the
bounds above we cannot exclude the possibility of having a direct cascade of enstrophy
without an inverse cascade of energy. To overcome this problem, we introduce

`E =

∫∞
0
k−1E(k)dk

E
, `Ω =

∫∞
0
kE(k)dk

Ω
= kE

E

Ω
, (1.127) def:ellcentr

which are called length-centroids since the energy and enstrophy spectrum are multiplied
by k−1, that has a measure of a length. In analogy with the frequency centroids, `E and
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Figure 1.12: Forward transfer and backscatter
fig:S1S2again

`Ω are the mean length-scale at which energy and enstrophy are concentrated. Arguing
similarly to what was done for kE and kΩ, it is not difficult to show that

`Ω`E ≥
Ω

E
.

Therefore, if `Ω decreases then `E must increase. This means that the enstrophy cannot be
at arbitrarily small spatial scales without the energy being sent to large ones. Equivalently,
we cannot have a direct cascade of enstrophy without an inverse cascade of energy.

1.8 Dynamical phenomena and numerics

In this section we present some dynamical phenomena and numerics related to model
problems associated to the 3-wave kinetic equation. We recall that the evolution of the
wave nk is given in (1.66). The scaling parameters involved are (d, α, γ) where:

• d is the dimension: k ∈ Rd

• α is related to the dispersion: ωk ∼ kα

• γ stem from the nonlinearity: W k1
k2k3
∼ kγ

As usual by now, we consider only isotropic systems and we focus on the frequency
spectrum Nω that satisfies (1.98), namely

∂Nω1

∂t
= S1[Nω1 ] + S2[Nω1 ] + S3[Nω1 ].

The terms S1, S2, S3 are defined in (1.99), (1.101) and (1.103) respectively. S1 is respon-
sible for the forward-transfer whereas the other two are the backscatter terms. We recall
that the main advantage of splitting the right-hand side of (1.98) in this way is that we
only have one scaling parameter λ that is

λ =
2γ − α
α

.

The disavantage is that the Si have slightly different kernels.
To start our discussion, let us consider the cKZ constant given in (1.114). In some

model problems, it can be computed exactly. For instance, assume d = α and consider
the following toy models:

• Product kernel:
L(ω1, ω2) = (ω1 ω2)

λ
2 . (1.128) def:prodK
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Figure 1.13: Comparison between theoretical and numerical evaluations of the cKZ con-
stant for the kernels (1.128)-(1.129)

fig:cKZnum

• Sum kernel:

L(ω1, ω2) =
1

2

(
ωλ1 + ωλ2

)
. (1.129) def:sumK

In Figure 1.13 we compare numerical predictions with the exact calculation that can be
done for the kernels defined above. shall we add the exact calculation of cKZ for these
kernels? Is it doable by hand?. In view of the exact formulas available, the computation
of cKZ for these model problems can be considered as a good numerical test for the code
at hand.

1.8.1 Cascade without backscatter

We now consider an example where there is a forward cascade without backscatter. This
model arise from cluster aggregation problems. Instead of the 3WKE, consider the Smolu-
chowski equation:

∂Nm

∂t
=

∫ m

0

dm1K(m1,m−m1)Nm1Nm−m1 (1.130) eq:smol

− 2Nm

∫ ∞
0

dm1K(m,m1)Nm1 + J δ(m− 1),

where Nm(t) is the cluster mass distribution while K(m1,m2) is the kernel. This model
is essentially retaining only the term S1 in (1.98). Assume that

K(am1, am2) = aµ+νK(m1,m2),

K(m1,m2) ∼ mµ
1m

ν
2 m1 � m2.
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In addition, given a typical size s(t) we expect to have a self-similar behavior like

N(m, t) ∼s(t)aF (m/s(t))

F (x) ∼x−y x� 1.

maybe comment more about why?
As shown in Figure 1.14, we see that if we start at large spatial scales (small frequen-

cies), we observe that information travels towards large frequencies.

Figure 1.14: Numerical simulation of (1.130) with K(ω1, ω2) = (ω1ω2)
3
2

.fig:smol

For this cluster-cluster model we also have an analogue of the anomalous dissipa-
tion, see (1.8), called Gelation Transition Add REF Lushnikov [1977], Ziff [1980]. More
precisely, notice that the mass, defined as

M(t) =

∫ ∞
0

mN(m, t) dm, (1.131)

is formally conserved for (1.130). However for µ+ ν > 1, one observes that

M(t) <

∫ ∞
0

mN(m, 0) dm t > t∗, (1.132)

for some t∗. This mechanism is best studied by introducing a cut-off Mmax, and studying
the limit Mmax → ∞, a method pioneered by Laurencot in this context REF. In Figure
1.15 we show a numerical simulation with different truncation parameters. As Mmax

grows, it seems that the loss of the mass happens at a specific time t∗ ∼ 3, with a sharper
transition as we increase the value of the cut-off. The cut-off can be considered as a
dissipation parameter. The Gelation transition indicates that even if we takeMmax →∞,
hence no dissipation, we still observe some dissipative mechanism in the system, in analogy
with a large Reynolds number limit in the fluid context. Other phenomenon are also
observed:

• If ν > 1 then t∗ = 0. Add REF(Van Dongen & Ernst [1987]) This is called instan-
taneous gelation.

• It may also complete, namely M(t) = 0 for t > 0. An example when this happens
is for the model K(m1,m2) = m1+ε

1 +m1+ε
2 with ε > 0.
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Figure 1.15: M(t) for K(m1,m2) = (m1m2)3/4
fig:Gelation

Are these some mathematical pathologies? Do that indicates a sort of ill-posedness with
that parameters? We should observe that, in some sense, removing the back-scatter from
the 3WKE has made the equation simpler but still there are potential ill-posedness. On
the other hand, this also means that there are interesting things going on.

In fact, there are applications with ν > 1, coming for example from atmospheric
science and astrophysics models. From a mathematical point of view, it should make no
sense. However, in the literature REF there were numerical simulations comparing their
results with observations, and were somehow in agreement. If we try to run a numerical
simulation in a case where we expect the instantaneous gelation, see Figure 1.16, we
observe the following:

• Introducing a cut-off Mmax, the regularized gelation time, t∗Mmax
, is clearly identifi-

able.

• t∗Mmax
decreases as Mmax increases, which is expected since for the original problem

we have instantaneous gelation. In fact, REF Van Dongen & Ernst recovered the
result in the limit Mmax →∞.

Remark 12. The decrease of t∗Mmax
as Mmax is incredibly slow (numerics suggest logarith-

mic decrease). This can be a justification of why such models are physically reasonable.
This is consistent with related results of REF:Krapivsky and Ben-Naim and Krapivsky
[2003] on exchange-driven growth. In particular, we shouldn’t throw away a particular
model “just" because it is ill-posed mathematically.

If we want to try to understand what instantaneous gelation is doing, we can say that
it is an effect that comes from a sort of a runaway absorption of smallest clusters by the
large ones. This is clear from the analytically tractable (but non-gelling) marginal kernel,
m1 +m2, with source of monomers. In fact, the case m1 +m2 it may have a very singular
behaviour since it is on the boundary of seeing an instantaneous gelation. For instance,
just think of replacing that kernel by m1+ε

1 + m1+ε
2 for a small ε. However, it is easier to

treat analytically the case with a source that can sort of mimic some of the interesting
behaviour of the instantaneous gelation.
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Figure 1.16: M(t) for K(m1,m2) = (m1 + m2)4/3. We have instantaneous gelation for
this kernel.

fig:IG

Figure 1.17: Total density,
∫∞

0
N(m, t) dm for K(m1,m2) = m1 +m2 and source.

fig:N_sumkernel

We can derive an equation for the total mass in the system, which grows likeM(t) ∼ t
just because there is a source. On the other hand, defining N(t) as the integral of density,
which is counting the number of particles, we will see that N(t) ∼ 1/t, see Figure 1.17

The interpreation we can give is that if the exponent ν > 1, then this process where
big clusters absorb the smaller ones is extremely efficient. In particular, in a numerical
simulation the absorption just diverges with the cut-off, Mmax. (cf “addition model"
(Brilliantov & Krapivsky [1992], Laurencot [1999])). In this kind of system, we will not
observe something like a local cascade where there is range of scales where particles merges
only with others with nearby sizes. Here, everything is being driven by interaction with
the largest particle in the system.

Is it there a similar mechanism for a 3WKE? The analogy would be that the highest
frequencies are dominating all of the resonances. We do not know wheter this may true or
not, but remember that in our simple model we have neglected the backscatter processes.

With a cut-off, we may also reach a stationary state if a source of monomers is present
REF: (Horvai et al [2007]) even though no such state exists in the unregularized system.
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Figure 1.18: Stationary state (theory vs numerics).
fig:SS_M1E4

This stationary state, for M � 1 has the asymptotic form

Nm =

√
2Jγ log M

M
Mm−γ m−ν , γ = ν − µ− 1 (1.133)

We have an exponential behaviour for small m and a power law for large m. In particular,
it agrees well with numerics without any adjustable parameters, see Figure 1.18.

Remark 13. Even in the power-law regime, we do not have the KZ spectrum. The
amplitude of our spectrum is a function of the cut-off, not universal. In addition, the
stationary state vanishes as M → ∞. The stationary state will not support a constant
flux of mass in the limit. But we are forcing, so what happens to the mass flux?

It turns out that instead of a constant flux propagation through the scales, we have
Hopf bifurcation from the stationary state as M is increased. Therefore, our constant
mass flux phenomenology stops being the right description. More precisely, we observe
the following:

• Semi-analytic linear stability analysis of the exact stationary state shows that the
nonlocal stationary state is linearly unstable for large enough M .

• The constant mass flux is replaced by time-periodic pulses.

• The oscillatory behaviour is due to an attracting limit cycle embedded in this very
high-dimensional dynamical system. There has been recent mathematical works by
REF: Pego, Valazquez, Niethammer

Remark 14. One may think that an oscillatory behaviour is somewhat counter-intuitive,
since it is always implicitly assumed that the system will reach a steady state at long
times. However, also in the 2D Euler equations the numerics suggests that the system
does reaches a state which oscillates periodically in time rather than a steady state.

1.8.2 Dissipative anomaly & dynamical scaling

Let us now return to our main subject, namely wave turbulence. We have to insert back
the backscatter we removed from the 3WKE. However, it is not clear yet which properties
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Figure 1.19: Total density, N(t), vs time for ν = 3
2
, µ = −3

2
.

fig:instability_hardCutoff

Figure 1.20: Linear stability analysis
fig:exponentialGrowth

observed in the Smoluchovski case are going to be preserved or lost. One may try to
have some guess in terms of self-similar solutions. We expect that that this time-evolving
solutions are going to develope wave turbulunce. In particular, developing wave turbulence
refers to the evolution of the spectrum before the onset of dissipation. We shall focus on
the unforced case since it is easier to analyze.

Consider for instance the numerical simulations shown in Figure 1.14, where we have a
3WKE with kernel K(ω1, ω2) = (ω1ω2)

3
2 . For this kernel, the scaling parameter λ, defined

in (1.100), is λ = 3. This corresponds to a finite capacity system and we expect that the
cascading process should be observed regardless of the size of the cut-off or the presence of
forcing. Indeed, in Figure 1.14 we observe how the system dissipates at higher frequencies
even without forcing. Looking at the curve at time t = 3 in Figure 1.14, it is an ongoing
debate whether the slope that you see in the time evolving solution as you approach this
dissipation dissipation time is (λ + 3)/2, corresponding to a stationary state. The belief
it is that it is not exactly this one but close.

As a consinstency check for the numerical simulation, one can actually clearly identify
the time T∗ where the energy dissipation starts, see Figure 1.21.

To distinguish finite and infinite capacity systems, let us consider the stationary KZ
spectrum:

Nω = cKZ

√
J ω−

λ+3
2 . (1.134)
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Figure 1.21
fig:diag_PK_1p5

The total energy contained in the spectrum is

E = cKZ

√
J

∫ Ω

1

dω ω−
λ+1
2 . (1.135)

In particular, notice the following:

• E diverges as Ω→∞ if λ ≤ 1 . This corresponds to the Infinite Capacity .

• E finite as Ω→∞ if λ > 1 , which is the the Finite Capacity case.

As we already mentioned in the last section, the transition occurs at λ = 1.
In the finite capacity case, the system exhibit a dissipative anomaly as the dissipation

scale goes to infinity. For infinite capacity systems, the cascades can absorb as much
energy as we want. In Figure ?? we can see a comparison between infinite and finite
capacity energy dissipation. As the cut-off increases, the infinite capacity system dissi-
pates later. Instead, the finite capacity one has a sharp transition around time t = 3 for
sufficiently large cut-off. This is analogous to the gelation transition, except now, instead
of mass being lost from a particle system, we have energy being lost from a turbulent
cascade as modeled by the 3WKE. There has been a recent paper by REF: Soffer and

Figure 1.22: A product kernel with λ = 3/4 on the left and λ = 3/2 on the right.
fig:dissipation_PK_0p75
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Tran where they claim to have established the presence of finite time dissipation for at
least a particular case.

To start investigating these transient solutions REF: (Falkovich and Shafarenko, 1991),
we need to make some hypotheses. Firts, we assume there exists a typical scale, s(t), such
that Nω(t) is asymptotically of the form

Nω(t) ∼ s(t)−a F (ξ) ξ =
ω

s(t)
. (1.136)

This is called the scaling hypothesis. We expect to have a self-similar solution because
the WKE is scale invariant. Assuming this ansatz, we get that the typical frequency, s(t),
and the scaling function, F (ξ), satisfy:

ds

dt
= sλ−a+2

−aF − ξ dF
dξ

= S1[F (ξ)] + S2[F (ξ)] + S3[F (ξ)].

But what is the characteristic time here? From a numerical point of view, it is natural to
take ratio of moments and frequency distributions why?. The transient scaling exponent
is instead given by the small ξ divergence of the scaling function, namely F (ξ) ∼ Aξ−x.

We are mainly focusing on the unforced case, but it is instructive to see also what
happens if we have forcing in this self-similar solutions, see Figure ?? for a numerical
simulation. We expect energy to be growing linearly

J t =

∫ ∞
0

ωNω dω = s(t)a+2

∫ ∞
0

ξ F (ξ) dξ. (1.137)

If we assume F (ξ) ∼ Aξ−x, balancing leading order terms in the scaling equation leads
to:

x =
λ+ 3

2
, (1.138)

A =
√

2

(
dI

dx

∣∣∣∣
x=λ+3

2

)−1/2

= cKZ . (1.139)

We thus recovered the KZ exponents, which is basically coming from the conservation
of energy maybe I can include that computation about KZ spectrum via conservation
of energy. Observe that we may have convergence problem at the origin when λ = 1,
whereas from numerics it is clear we will not have any problem at infinity for all values
of λ. Hence, in if λ < 1, namely infinite capacity system, we should expect to reach the
KZ stationary state.

On the other hand, in the unforced case the energy is conserved

1 =

∫ ∞
0

ωNω dω = s(t)a+2

∫ ∞
0

ξ F (ξ) dξ. (1.140)

See Figure 1.24 for a numerical simulation. Arguing as before, assuming F (ξ) ∼ Aξ−x

and balancing leading order terms in the scaling equation, leads to:

x = λ+ 1

A =
λ− 1

I(λ+ 1)
.
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Figure 1.23: Self-similar evolution for the forced case with L(ω1, ω2) = 1. Inset shows
scaling function F (ξ) compensated by x3/2 and predicted amplitude.

fig:forcedScaling

Figure 1.24: Numerical simulations of the self-similar solution in the unforced case
fig:decayScaling

We do not have the KZ exponent coming out. However, we still have a convergence
problem at λ = 1.

The previous argument fails for both forced and unforced cases at λ = 1, which is
the boundary of the finite capacity regime. Let us then consider a finite capacity system.
Here we have ∫ ∞

0

ξ F (ξ) dξ

diverges at zero, so that the conservation of energy does not determine the dynamical
exponent a. These type of self-similar solutions where you cannot determine the scaling
exponent by conservation laws, are called of second type REF: Barenblatt?. For finite
capacity systems, we therefore observe s(t)→∞ as t→ t∗. If F (ξ) ∼ ξ−x as ξ → 0 then
the scaling implies that

N(ω, t) ∼ s(t)a
(

ω

s(t)

)−x
= s(t)a+x ω−x (1.141)

as t→ t∗. Hence the transient exponent, x must be taken equal to −a if the spectrum is
to remain finite as t→ t∗. This is true independent of whether we force or not.
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On the contrary, for an infinite capacity system we could determine a just by the
conservation laws. It is not know a priori how to determine the dynamical exponent a in
the finite capacity case. We know that it must be determined by self consistently solving
the scaling equation:

− aF − ξ dF
dξ

= S1[F (ξ)] + S2[F (ξ)] + S3[F (ξ)]. (1.142)

Dimensionally, one might guess a = −λ+3
2
, the KZ value. However, overwhelming numer-

ical evidence suggests that this is not so: add all REF Cluster-cluster aggregation (Lee,
2000), MHD turbulence (Galtier et al., 2000), Non-equilibrium BEC (Lacaze et al, 2001),
Leith model (CC & Nazarenko, 2004), Generic 3-wave turbulence (CC & Newell, 2010)

The difference it is somehow small, but it is there. See Figure 1.25 for numerical
simulations. We can summarize the main observations that can be deduced from the
numerics as follows:

• For 3WKE with K(ω1, ω2) = (ω1ω2)λ/2, the transient spectrum is consistently
(slightly) steeper than the KZ value.

• KZ spectrum is set up from right to left.

• Finite capacity in itself is not sufficient for the anomaly (e.g. the Smoluchowski
equation with product kernel REF to previous section).

• Anisotropy is not necessary but it might help REF:(c.f. Galtier et al. 2005).

Figure 1.25: Caption
fig:finiteCapacityAnomaly

1.8.3 Spectral truncations of the wave collision operator

We now turn our attention to a spectrally truncated 3WKE. Thus, we introduce a maxi-
mum frequency Ω such that

Nω = 0, for all modes having ω > Ω.
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Then, in sum over triads we only include

ωj ≤ ωi < ωk ≤ Ω.

However we must choose how to approximate triads having

ωj ≤ ωi < Ω < ωk,

which are only relevant for S1[Nω] REF previous section. We have here different options:

• Include them: that is an open truncation. In this case we included a dissipative
mechanism.

• Remove them: a closed truncation. This case is conservative.

• Damp them by a factor 0 < ν < 1: partially open truncation. Also here we have a
dissipative mechanism

There is not an easier choice, and this is becoming complicated because we are trying to
put a boundary condition on the energy flux at our dissipation scale Ω. Clearly, this is
an artifact of our approximation since there is no real in boundary condition.

The actual truncated equations are the following

dNi

dt
= S

(1)
i [N,Ω] + S

(2)
i [N,Ω] + S

(3)
i [N,Ω]− γ Ti[N,Ω], i = 1, 2, . . .Ω,

with the truncated collision integrals given by

S
(1)
i [N,Ω] =

i−1∑
j=1

K1(j, i− j)NjNi−j −
Ω∑

j=i+1

K1(j − i, i)NiNj−i −
Ω−i∑
j=1

K1(i, j)NiNj,

S
(2)
i [N,Ω] = −

i−1∑
j=1

K2(j, i− j)NiNj +
Ω∑

j=i+1

K2(j − i, i)NjNj−i +
Ω−i∑
j=1

K2(i, j)NiNi+j,

S
(3)
i [N,Ω] = −

i−1∑
j=1

K3(j, i− j)NiNi−j +
Ω∑

j=i+1

K3(j − i, i)NjNi +
Ω−i∑
j=1

K3(i, j)NjNi+j.

Consider now the dissipative “boundary condition" case. The modified collision inte-
grals S(1)

i , S(2)
i and S(3)

i conserve energy. The dissipative “boundary" terms that transfer
energy across the cutoff are

Ti[N,Ω] = γ

(
Ω+i∑

j=Ω+1

K1(j − i, i)NiNj−i +
Ω∑

j=Ω−i+1

K1(i, j)NiNj

)
.

With the open truncation, we will see the KZ solution!, see Figure 1.26. However, the
open truncation can produce a bottleneck as the solution approaches the dissipative
cut-off REF:(Falkovich 1994). However, this bottleneck does not occur for all L(ω1, ω2)
REF???. One also has that the energy flux at Ω is 1.

For a closed truncation, we will observe thermalisation REF:(CC and Nazarenko
(2004), Cichowlas et al (2005) ), see Figure 1.27. The energy is equilibrating as you go
near to your numerical cut-off. We will see at large frequencies the equilibrium spectrum.
Interestingly enough, thermalisation occurs for all L(ω1, ω2). Since the energy is conserved
for this system, we also know that the energy flux at Ω is 0.

Write something nice to end the chapter
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Figure 1.26: Compensated stationary spectra with open truncation. Product kernel:
L(ω1, ω2) = (ω1ω2)λ/2.

fig:bottleneck

Figure 1.27: Quasi-stationary spectra with closed truncation. Product kernel: L(ω1, ω2) =
(ω1ω2)λ/2

fig:thermalisation2

.



50 Chapter 1. Wave Turbulence: a theoretical physics perspective



Chapter 2
Wave Turbulence: a Mathematical
Perspective

2.1 Introduction

intro to the lecture notes

2.2 Lecture 1: Wave Propagation and Forcing

We begin studying general linear wave equations of the form

∂tu+ Lu = f (2.1)

In this equation, u is a vector-valued unknown with dependence on time and space, the
wave operator L is linear and skew-symmetric (〈Lu,v〉 = −〈u, Lv〉), and the forcing f
is a source term.

When f = 0, taking inner products with u and using skew-symmetry:

0 = ∂t〈u,u〉+ 〈Lu,u〉 = ∂t〈u,u〉

Hence energy is conserved in the absence of forcing. The superposition principle also
holds when f = 0. Linear combinations of solutions are also solutions.

It is desirable to determine a set of oscillating modes which solve the equation, known
as waves. More general solutions can be decomposed into these waves, which are then
studied. For instance, when L is a skew-symmetric constant coefficient differential opera-
tor in space, we find plane wave solutions of the form ei(k·x−ωt). We look for a dispersion
relation, which selects the plane waves that are honest solutions to the wave equation.
The dispersion relation is key to characterizing the waves that are seen both in the absence
of forcing and in its presence.

2.2.1 Examples of Dispersion Relations

Poincaré waves



52 Chapter 2. Wave Turbulence: a Mathematical Perspective

Consider the incompressible Euler equations on the domain T3 = [0, 1]3 with periodic
boundary conditions, subject to a Coriolis force in the ẑ (vertical) direction.{

∂tu+ (u · ∇)u+∇p+ ẑ × u = 0

∇ · u = 0

Under the assumption that u is small, we may neglect the nonlinearity. Taking the
divergence of the first equation and applying ∇ · u = 0 produces an equation for the
pressure:

∆p+∇ · (ẑ × u) = 0.

We have ẑ × u = (−u2, u1, 0). In Fourier space, the pressure equation becomes

−|k|2p̂− ik1û2 + ik2û1 = 0.

Note that the incompressibility condition determines u3 from u1 and u2:

0 = ik1û1 + ik2û2 + ik3û3.

Then we need only to consider the first two components of the velocity. The first two
components of ∇p are

∇̂p =

(
ik1

ik2

)
p̂ =

1

|k|2

(
ik1(ik2û1 − ik1û2)
ik2(ik2û1 − ik1û2)

)
=

1

|k|2

(
−k1k2 k2

1

−k2
2 k1k2

)(
û1

û2

)
.

Moving the linearized equations for u1 and u2 to the Fourier domain, we find

iω

(
û1

û2

)
+

1

|k|2

(
−k1k2 k2

1

−k2
2 k1k2

)(
û1

û2

)
+

(
−û2

û1

)
= 0.

Then for plane wave solutions, iω must be an eigenvalue of the 2× 2 matrix(
k1k2
|k|2 1− k21

|k|2
k22
|k|2 − 1 −k1k2

|k|2

)

This means that iω must be a root of the characteristic polynomial:(
−k

2
1k

2
2

|k|4
+ (iω)2

)
+

(
1 +

k2
1k

2
2

|k|4
− k2

1

|k|2
− k2

2

|k|2

)
= (iω)2 +

k2
3

|k|2
= 0

Hence the dispersion relation is ω = ± k3
|k| . The relation determines plane wave solutions

ei(k·x−ωt) to the linearized Euler equations on T3.

Inertial gravity waves

Consider the linearized shallow water equations with averaged velocity in the vertical
directions, horizontal velocity u, water height H+η(x, y, t), gravity g and varying Coriolis
parameter βy. The equations are{

∂tη +∇ · u = 0

∂tu+ g∇η + βyu⊥ = 0
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The plane wave ei(kx+`y−ωt) is not a good ansatz due to the nonconstant coefficient on
the Coriolis term. We instead opt to look for solutions which are plane waves in t and x,
ei(kx−ωt)(η̂(y), û1(y), û2(y)). Taking Fourier transforms in x and t of our equations,

iωη̂ + ikû1 + ∂yû2 = 0

iωû1 + ikgη̂ − βyû2 = 0

iωû2 + g∂yη̂ + βyû1 = 0

We can write η̂ and û1 in terms of û2. From the second equation, we find

η̂ =
1

ikg
(βyû2 − iωû1).

The first tells us

iω
1

ikg
(βyû2 − iωû1) + ikû1 + ∂yû2 = 0 =⇒ û1 =

1

i(ω2 − k2g)
(kg∂yû2 + ωβyû2)

Using these values for û1 and η̂ in the third equation, we find

0 = iωû2 +
1

ik

(
β(û2 + y∂yû2)− iω 1

i(ω2 − k2g)
(kg∂2

y û2 + ωβ(û2 + y∂yû2))

)
+ βy

1

i(ω2 − k2g)
(kg∂yû2 + ωβyû2)

=

(
iω +

ωβ2y2 − βkg
i(ω2 − k2g)

)
û2 −

ωg

i(ω2 − k2g)
∂2
y û2

Simplifying, we find the relation:

0 = (ω3 + ωk2g + βkg)û2 + ω(g∂2
y − β2y2)û2

This relation tells us that û2 is in fact an eigenstate of the operator ∂2
y −

β2

g
y2, the

harmonic oscillator. This operator has a discrete spectrum of eigenvalues, β√
g
(2n + 1)

whose eigenstates are the Hermite functions. Hence we find solutions which are plane
waves in x and t and Hermite modes in y which satisfy the dispersion relation:

0 = ω3 + ω(k2g + β
√
g) + βkg

This example worked out well in part because the nonconstant coefficient was linear.
Equations with more complicated variable coefficients will rarely admit such immediate
families of solutions.

Vibrating plates

Consider a thin metal plate with no vertical stress, a linear displacement field in the
normal direction z, and negligible tangential inertia compared to the normal inertia. The
displacement ζ is described by a linear Föppl-von Kármán equation

∂2
t ζ = − Eh3

12(1− σ2)
∆2ζ
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where E, h, and σ are constants. Taking a Fourier transform, we find

−ω2ζ̂ = − Eh3

12(1− σ2)
|k|4ζ̂

and the dispersion relation looks like ω ∼ ±|k|2 with plane wave solutions.

Surface capillary waves

Consider the linearized equations for capillary waves in a fluid with a free surface with
surface tension σ, gravity g, and infinite depth. The vertical perturbation of the fluid is
η(x, t) and the velocity potential is φ(x, z, t). The equations are

∂tη = ∂zφ z = 0

gη + ∂tφ = σ∂2
xη z = 0

∇2φ = 0

Suppose η(x, t) = ei(kx−ωt). Then the first equation suggests we look for φ of the form
φ(x, z, t) = −iωf(z)η(x, t). Plugging this ansatz into Laplace’s equation tells us that

f ′(z) = k2f(z) =⇒ f(z) = Aekz +Be−kz.

To obtain a physical solution, we must have B = 0. Plugging again into the first equation
tells us A = 1/k. We have found the velocity potential to be

φ(x, z, t) = −iω
k
ekzη(x, t)

Using φ and η in the second equation, we find that

gη − ω2

k
η = −σk2η

and multiplying by k/η produces the dispersion relation

ω = ±
√
gk + σk3.

2.2.2 Forced waves with discrete spectrum

Consider linear forcing system {
∂tu+ Lu = feiλt

u|t=0 = 0
(2.2) general-linear-discrete

where

• the wave operator L has only discrete spectrum which is included in the imaginary
axis, i-e L has a countable family of eigenvalues/eigenvectors (iωn, ψn) which solve
Lψn = iωnψn (in mathematical terms, L is skew-adjoint with compact resolvent).

• the forcing term f(x)eiλt is monochromatic with forced frequency λ.
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Since the eigenvectors are an orthonormal basis of the energy space L2, we can make
decompositions

f(x) =
∑
n

fnψn(x) and u(t, x) =
∑
n

un(t)ψn(x).

Consequently, the coefficients (un)n satisfy the ODEs

∂tun + iωnun = fne
iλt,

and thus the solution is

eiωntun(t) =

∫ t

0

fne
i(λ+ωn)sds.

Two situations with different behaviours appear with the value of λ+ ωn :

• Resonant forcing λ+ ωn = 0 In that case, the solution

eiωntun(t) = fnt

has a linear growing in time. Consequently, the energy growth as

|un|2 = |fn|2t2.

• Non resonant forcing λ+ ωn 6= 0 In that case, the solution

eiωntun(t) = fn
ei(λ+ωn)t − 1

i(λ+ ωn)

is oscillating. Consequently, the energy is always bounded in time

|u(k/L)(t)|2 = |f(k/L)|2
∣∣∣∣∣sin

[
1
2

(
ω0 − h

(
k
L

))
t
]

1
2

(
ω0 − h

(
k
L

)) ∣∣∣∣∣
2

.

If there is no resonant forcing, i-e for all n, λ+ωn 6= 0, then the system is not able to cap-
ture energy. If there is some resonant forcing, the energy concentrate on eigenfrequencies.
This will be crucial for the wave turbulence theory that we will discuss in next sections.

2.2.3 Forced waves with continuous spectrum

In the examples before, the dynamics are driven by a discrete set of eigenvalues. What
happens if the spectrum is not discrete? We will first study this situation on examples.

Schrödinger equation

Consider the Schrödinger equation without potential in the full space

i∂tψ + ∆ψ = 0 on Rd. (2.3) dinger-linear

If we look for plane wave solutions ei(ξ·x−ωt), then ω and ξ must satisfy the dispersion
relation ω − |ξ|2 = 0. Thus the solution can be written as a linear "superposition" of
plane waves

ψ(t, x) =
1

2π

∫
Rd
ψ̂(0, ξ)ei(ξ−t|ξ|

2)xdξ.
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When we have have discrete spectrum, the superposition is a sum, here it is an integral and
the "coefficients" ψ̂(0, ξ) are the continuous Fourier transform of the initial condition ψ|t=0.
The dispersion relation ω = |ξ|2 and the Fourier mode eix·ξ can be seen as "generalized"
eigenvalues / eigenfunctions in the sense that we have the following diagonalisation of the
Laplacian

−∆(eix·ξ) = |ξ|2eix·ξ.

We say "generalised" eigenfunctions since they have infinite L2 energies
∫
|eix·ξ|2dξ = +∞.

The spectrum here is R+.

Homogenous operators of degree 0

Other examples are linked with homogenous operators of degree 0. Degree 0
means roughly that no "derivative" acts. As example, the multiplication by a function
ϕ(x) is a linear operator of degree 0. To define it correctly, one needs to introduce
the notion of symbols of linear operators. Take for example the polynomial differential
operator

H(x, i∂) =
∑
j

aj(x)(i∂x)
j,

freeze the coefficients aj(x) and take the Fourier transform, it gives

h(x, ξ) =
∑
j

aj(x)ξj

which is called the symbol of H. More generally, the symbol h of an linear operator H is
defined by the action of H on Fourier modes

Heix·ξ = h(x, ξ)eix·ξ

The symbol is sometimes called the quantification. The operatorH associated to a symbol
h is called a pseudo-differential operator. It seems natural to definite it by

Hu = F−1(hFu) ∀u ∈ L2

for a function u with F the Fourier transform. This way to associate h and H with the
use of Fourier transform is called the Weyl quantification1. We say that operator is degree
n if its maximal derivative is n, i-e its symbol satisfies

|h(x, ξ)| ≤ (1 + |ξ|)n

and we say it is homogeneous of degree 0 iff its symbol is homogeneous of degree 0:

h(x, λξ) = h(x, ξ).

All the following examples are homogeneous of degree 0:

• multiplication with a function h(x, ξ) = ϕ(x)

• internal waves in 2D h(x, ξ) = ξ1/|ξ|
1The Weyl quantification is not the only way to associate an operator to a symbol. See for example

the Bony quantification for the para-differential calculus
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• inertial waves in 2D h(x, ξ) = ξ3/|ξ|

A way to prove that an homogeneous operator of degree 0 has continuous spectrum
is to show that one of the variable x(t) or k(t) of the Hamiltonian dynamics related the
symbol h(x, k) {

ẋ(t) = ∇kh

k̇(t) = −∇xh

admits an at least linear growth in time. This is a consequence of the Mourre theorem
(see Corollary 2.6.3). We will see this on the examples we mentioned above.

2.2.3.0.1 Multiplication by a function in 1D The Hamiltonian dynamics are given
by {

ẋ(t) = 0

k̇(t) = −∂xϕ(x).

If ∂xϕ 6= 0, then k(t) grows linearly and thus there is continuous spectrum. In any
dimension, if ∇ϕ(x) 6= 0 for all x, then the whole spectrum is continuous.

2.2.3.0.2 Internal waves The Hamiltonian dynamics of 2D internal waves with affine
stratification is given by {

ẋ1(t) =
k23
|k|3 ẋ3(t) = −k3k1

|k|3

k̇1(t) = 0 k̇3(t) = 0

The trajectory xh cannot go to∞. However, due to the refection on the boundary, kh can
go to ∞. This is the case when one boundary is not horizontal or vertical. The reflection
laws on a slope tilted with angle α with respect to the horizontal are

(kr1)2

|kr|2
=

(ki1)2

|ki|2
(conservation of energy)

kr1 − ki1
kr3 − ki3

= tanα (zero flux condition)

where (xi, ki) refers to the incident ray whereas (xr, kr) to the reflected ray.

2.2.4 Forced waves with absolute continuous spectrum
sec:forcedAbsCts

Consider again the linear Schrödinger equation (2.3) in the Fourier space with amonochro-
matic forcing

∂tû+ i|ξ|2û = f̂ eiλt.

The solution is

ei|ξ|
2tû(t, ξ) = f̂

ei(λ+|ξ|2)t − 1

i(λ+ |ξ|2)

In the continuous spectrum case, (λ + |ξ|2) can be as small as you want, thus the
distinction between resonance and non-resonance doesn’t make sense. We will say that
(λ+ |ξ|2) = 0 is a quasi-resonance forcing. The solution in time domain

u(t, x) =

∫
Rd
f̂
ei(λ+|ξ|2)t − 1

i(λ+ |ξ|2)
e−i|ξ|

2teix·kdξ
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must be seen as a singular integral. On a test function ϕ ∈ L2, Parseval’s theorem says

(u, ϕ)L2 =
1

2π

∫
Rd

ei(λ+|ξ|2)t − 1

i(λ+ |ξ|2)
e−i|ξ|

2tf̂(ξ)ϕ̂∗(ξ)dξ

=
eiλt

2iπ

∫
Rd

1− e−i(λ+|ξ|2)t

λ+ |ξ|2
f̂(ξ)ϕ̂(ξ)dξ

If the test function and the source are such that f̂(ξ)ϕ̂(ξ) is the indicator function of [a, b]
one gets

(u, ϕ)L2 =
eiλt

2iπ

∫
Rd

1− e−i(λ+|ξ|2)t

λ+ |ξ|2
1[a,b]dξ

that gives with the change of variable µ = (λ+ |ξ|2)t

(u, ϕ)L2 =
eiλt

2iπ

∫
Rd

1− e−iµ

µ
1[a−|ξ|2t,b−|ξ|2t]dξ

and thus

(u, ϕ)L2 =
eiλt

2iπ

[
iπ + log

(
b− |ξ|2

a− |ξ|2

)
+O

(
1

t

)]
To have physical meaning, it can be more relevant to look at the energy

1

2π

∫
Rd
|ξ|2|ψ̂(ξ)|2dξ =

1

2π

∫
Rd

∣∣∣∣∣1− e−i(λ+|ξ|2)t

λ+ |ξ|2

∣∣∣∣∣
2

|ξ|2|f̂(ξ)|2dξ.

Using the symmetry of |ξ|2 and the same change of variable, one gets

1

2π

∫
Rd
|ξ|2|ψ̂(ξ)|2dξ =

t

2π

∫ +∞

λt

∣∣∣∣1− e−iµµ

∣∣∣∣2G(µt − λ) dµ ∼t�1
G(λ)

4
t

where G(x) =
√
x(|f̂(

√
x)|2 + |f̂(−

√
x)|2).

Contrary to discrete spectrum case, here the quasi-resonance mechanism have the
following procedure

1. at the beginning, the force excite a large band around the forcing frequency λ

2. this band shrinks gradually around the forcing frequency λ as time increase,

3. when t → ∞, the energy grows linearly in time. What we observe looks like
more and more to generalised eigenfunctions which has not L2 finite energy.

The main difference between quasi-resonance mechanism associated to (absolutely)
continuous spectrum and resonance associated to discrete spectrum is the growth of en-
ergy. It the first case, it is linear whereas, in the second case, it is quadratic. This is one
key-stone of wave-turbulence theory.
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2.3 Lecture 2: Random Perturbative Forcing

In the previous section, we have concentrate our effort on additive forcing ∂tu+ Lu = f .
We have seen that there a growth of energy in longtime scale if the forcing is resonant or
quasi-resonant.

• Resonant forcing. It corresponds to the case where L have a discrete spectrum
and where the forcing excites an eigenvalue. In that case, there is a linear growth
of the amplitude of the resonant mode and thus

∂2
tt Energy ∼ constant.

• Quasi-resonant forcing. It corresponds to the case where L have a continu-
ous spectrum and where the exciting frequency are inside the continuous spectrum
without being itself an eigenvalue. In that case,

∂t Energy ∼
t�1

constant.

In this section, we will be interested in parametric forcing, i-e a multiplicative
forcing

∂tu+ Lu = fu,

which induces interactions between the forcing and the solution. Moreover, f will have
some randomness.

As first example of parametric forcing we will see a periodic perturbation of Schrödinger
equation

i∂tψ −∆ψ = −Vperψ where Vper is periodic

which describe the electrostatic structure in a crystal. When Vper is constant, we have
seen that we can look for Fourier plane waves eik·x solutions. Here, since Vper is periodic
we look for Bloch waves ψk(x) = eik·xu(x) solutions where u(x) is a periodic function
with same period in the crystal lattice. More precision on Bloch waves can be found in
appendix. In particualr, in it appendix, it is explain why the spectrum of H = −∆ +Vper

have a band-gap structure and why the Bloch waves are "generalized eigenfunctions of
H.

Then we will considered that the the parametric force is no longer periodic but random.
What can we say about the propagation of waves

i∂tψ +Hψ = O with H = −∆ + Vrand

in a random media ? In Rd with d ≥ 3, there is a Anderson’s conjecture bases on
experiments which states

• (weak random parametric forcing.)

Vrand � 1 ⇒ E
[∫
|x||ψ(t, x)|2

]
∼
t�1

D
√
t

which is typical of diffusion,
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• (high random parametric forcing.)

Vrand � 1 ⇒ E
[∫
|x||ψ(t, x)|2

]
≤ C

which is typical of localization.

The second case is also true when d ≤ 2 and Vrand not necessary high. In the following,
we will focus on the case of weak random parametric forcing.

2.3.1 Linear Perturbation Theory

The Iterated Duhamel Expansionsec:iteratedDuhamel

Suppose we have the wave operator L = i∆. Let ε > 0 and consider a small random
perturbative forcing f = iεV . Then we consider the equation

∂tψ + Lψ = iεV ψ

This is i∂tψ = Hψ for the Hamiltonian H = −∆ + εV , and then ψ = e−itHψ0. We will
iteratively apply Duhamel’s formula to tackle the perturbation. For a single iteration,
conjugate by the linear evolution group eit∆ and then integrate:

i∂t(e
it∆ψ) = eit∆(εV ψ)

eit∆ψ(t) = ψ0 − iε
∫ t

0

eis∆(V ψ(s)) ds

And we find the first iteration, How can H and ∆ swap under the integral sign?

ψ(t) = e−it∆ψ0 − iε
∫ t

0

e−i(t−s)HV e−is∆ψ0 ds

Applying this formula again to the term under e−i(t−s)H n times, we find

ψ(t) =
N−1∑
n=0

ψ(n)(t) + δψ(N)(t)

with the iterated Duhamel terms I don’t think the delta notation we wanted works here.

ψ(n)(t) = (−iε)n
∫
eis0∆V eis1∆V · · · eisn∆ψ0 δ(t−

∑
sj)ds0ds1 · · · dsn

and the remainder Similar concern about H and ∆

δψ(N)(t) = (−iε)
∫ t

0

e−i(t−s)HV ψ(N−1)(s) ds

It is not clear at the outset that this expansion will converge as N →∞.

Feynmann Diagrams
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Now suppose V =
∑

α∈Zd Vα, a sum of independent smooth random variables Vα with
support near α and E(Vα) = 0. We also make a summability assumption for each p, q:

E(
∑

αV̂α(p)V̂ α(q)) = |B̂(p)|2δp−q

where B̂ is a well-behaved, bounded, smooth function.
Then we can decompose ψ(n) into pieces ψA where A = (α1, . . . , αn) ∈ Znd using

linearity:

ψ(n) =
∑

(α1,...,αn)

ψA =:
∑

(α1,...,αn)

(−iε)n
∫
eis0∆Vα1 · · ·Vαneisn∆ψ0 δ(t−

∑
sj)ds0 · · · dsn

We can think of this as a decomposition into pieces which collide with the potentials at
given sequences A of lattice points.

α1 α2 α3 αn−1 αn
A

Figure 2.1: A sequence of collisions A = {α1, . . . , αn} in the lattice Zd.

For now, we will only analyze the A’s with no repeated indices. We will see that
paths with repeated indices admit better estimates than those without repetitions. So
our proposed decomposition is

ψ =
∑
n

∑
A w.o. repetitions

ψA + Repetition remainders + Duhamel remainder

With this decomposition, we may begin to estimate observables : quadratic quantities
in ψ. For instance, we can write the L2 norm:

E(‖ψ(t)‖2
2) =

∑
n,m

∑
A,B

E(ψAψB)

where A = (α1, . . . , αn) and B = (β1, . . . , βm). An observation known as Wick’s rule
tells us that the contribution is 0 whenever B is not a permutation of A. Indeed, then
we can use independence of the Vα’s to conclude that the expectations are 0. Here, it is
important that we have replaced our Hamiltonians by free propagation by e−it∆ during
the Duhamel iteration. This means that the propagators do not depend on V , allowing
independent terms to cancel.

So Wick’s rule tells us that B = π(A) for some permutation π, and we find

E(‖ψ(t)‖2
2) =

∑
n

∑
π∈Sn

( ∑
|A|=n

E(ψAψπ(A))
)

=:
∑
n

∑
π∈Sn

Val(π)

Remarks:

• This decomposition for the L2-norm can be similarly performed for any bounded
and smooth observable.
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β1 β2 β3 βn−1 βn

α1 α2 α3 αn−1 αn
A

B

Figure 2.2: An interaction of A and B. By Wick’s rule, B must be a permutation of A.

• We can obtain a bound on the Duhamel formula remainder, even though the pres-
ence of eitH (which depends on V ) prevents us from applying Wick’s rule. We apply
unitarity of eitH to bound quadratic quantities K in δψ(N):

K(δψ(N)(t))1/2 ≤ Ct

(
sup

0≤s≤t
‖εV ψ(N−1)(s)‖2

)1/2

where C depends on the L2 norms of ψ and ψ(n) for n < N . So the Duhamel
remainder is bounded in terms of the iterates. Not sure why C depends on these.

2.3.2 The Kinetic Limit
sec:kineticLimit

We would like to understand the evolution in time of the expectations of observables, i.e.
quadratic quantities in ψ(t). It will be helpful for us to note that the time scale for this
evolution, known as the kinetic time scale, is much greater than the time scale for the
oscillations. Which oscillations precisely here? This kinetic time scale is t = O(ε−2).

We will show convergence of the perturbative expansion on this time scale. Moreover,
we will show that only the classical collisions matter in this kinetic limit. This is desirable
since the kinetic equation holds at the level of classical mechanics.

Ladder graphs

The first terms of E(|ψ(t)|2) to estimate are the ladder graphs. These are the terms
Val(π) = E(ψAψB) where A = B and π = Idn. They correspond to Feynmann dia-
grams where all pairings are connected by vertical edges, or to classical collision histories
(meeting at each of the lattice points αj).

α1 α2 α3 αn−1 αn

α1 α2 α3 αn−1 αn
A

A

Figure 2.3: A ladder graph, where A = B.

We can attempt to estimate these terms naively using the fact that the volume of the
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n-simplex {(s0, . . . , sn) : sj ≥ 0,
∑
sj = t} is tn/n!:

Val(Idn) =
∑
|A|=n

E
[
(−iε)n

∫
eis0∆Vα1 · · ·Vαneisn∆ψ0 δ(t−

∑
sj)ds0 · · · dsn

× (iε)n
∫
e−is

′
0∆V α1 · · ·V αne

−is′n∆ψ0 δ(t−
∑
s′j)ds

′
0 · · · ds′n

]
|Val(Idn)| ≤ Cε2n

(
tn

n!

)2

= C
(εt)2n

(n!)2

Then the scaling is t = O(ε−1), which is not a long enough time scale for our purposes.
Note that we can bound the potential terms using the summability assumption we made
in the Fourier domain.

If we are more careful and combine the two integrals, we can use the oscillatory nature
of the integrand to exploit a quasiresonant mechanism. Similarly to how quasiresonance
turned quadratic growth into linear growth in simpler examples, here, we are able to
sharpen our bound to:

|Val(Idn)| ≤ Cε2n t
n

n!
= C

(ε2t)n

n!
Then the scaling is t = O(ε−2), and we are in good shape for convergence on the kinetic
time scale.

Non-ladder graphs

When π is nontrivial, we have crossings on the Feynmann diagrams corresponding to
non-classical interactions. For instance, consider B = (α2, α1, α3, . . . , αn). It turns out
that even one crossing like this gains two powers of ε on the naive bound. In general, the
contribution of Val(π) is related to the complexity of π: its number of crossings.

β1 β2 β3 βn−1 βn

α1 α2 α3 αn−1 αn
A

B

Figure 2.4: Feynmann diagrams with one crossing. ε2 gain on contribution.

So we estimate ∑
π 6=Idn

|Val(π)| ≤ ε2n!
(ε2t)n

n!
= O(ε2)

and when ε2t � 1, we conclude convergence of the series expansion for ψ in to ψ(n) on
the kinetic scale. The L2 norm is bounded as:

E(|ψ(t)|2) ≤
N−1∑
n=0

(ε2t)n

n!

(
1 + nε2 + n!ε4

)
+ Remainder

where 1 corresponds to ladder graphs, nε2 to graphs with one crossing, and n!ε4 to all
other graphs. The Duhamel remainder is bounded using our estimate by ψ(N−1):

Remainder ≤ t
(ε2t)N

N !
(1 +Nε2 +N2ε4 +N !ε6)
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β1 β2 β3 βn−1 βn

α1 α2 α3 αn−1 αn
A

B

β1 β2 β3 βn−1 βn

α1 α2 α3 αn−1 αn
A

B

Figure 2.5: Feynmann diagrams with two crossings. ε4 gain on contribution.

where t is the cost of having a uniform bound, and we extract out the N2ε4 term for
graphs with two crossings. If we now take

N ∼
∣∣∣∣ log ε

log | log ε|

∣∣∣∣
we find convergence of the perturbative expansion as ε→ 0.

Remarks:

• To obtain the limit for diffusive times, a more precise treatment of the remainders
is required, the Feynmann diagrams need to be classified more carefully, and there
is a renormalization due to the repetitions.

• The perturbative approach we took is not the only option. Another method involves
using Bloch waves defined in a weak, distributional sense to pass to the kinetic limit.

2.4 Lecture 3: Weakly Nonlinear Wave Equations

In the linear setting where we have considered linear Schrödinger equation with weak
random parametric forcing

i∂tψ −∆ψ + εV = 0,

we had a number of key ingredients:

• Smallness: Potential was εV for ε � 1. This smallness in L∞ led to a scale
separation, which allowed our perturbation expansion.

• Randomness: The independence relation allowed us to use Wick’s rule, which
allowed us to demand pairings on the polynomials in V .

• Quasiresonant Mechanism: Despite having a pair of integrals, their oscillations
meant that we were able to extract linear growth in t. This allowed convergence of
the perturbation expansion on the kinetic time scale t = O(ε−2).

• Combinatorics: The analysis of the permutation complexity allows us to discard
permutations with crossings and only consider ladder graphs.
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• Kinetic equation: At order O(ε2), we have an identification with Boltzmann
equation. This last one can written as

(∂t + v∇x)f(t, x, v) =

∫
σ(u, v)(f(t, x, u)− (f(t, x, v)du

where

– Transport: v∇x comes from the free Schrödinger equation (if we take the
Wigner transform of i∂t−∆, one gets ∂t + v∇x) where x is the position and v
is the wave number.

– Collision operator:
∫
σ(u, v)(f(t, x, u) − (f(t, x, v)du is a jump process in the

frequency space
∗ Cross-section: σ(u, v) = |B̂(u, v)|2δ|u|2−|v|2 where B is related to the ran-

dom potential
∗ Gain:

∫
σ(u, v)f(t, x, u)du is the contribution of ladder graphs

∗ Loss term: −
∫
σ(u, v)(f(t, x, v)du is the contribution of immediate repe-

titions (pair two adjacent α)

A A A

B B B

Figure 2.6: Left: gain term. Middle and right: loss terms.

Now, we will shift to the nonlinear case. With ε� 1, we write

∂tu+ Lu+ εQ(u) = 0

which has weak nonlinearity εQ(u). When L has discrete spectrum, for example if the
previous PDE is cast on a torus, the gaps between two eigenvalues are bounded from
below. One can should use filtering method to obtain the envelope equation for each
oscillating mode ( cf Frederic lecture, where ???). We will be interested in the case where
L has continuous spectrum, or almost-continuous spectrum. This is the case for large box
limit (when the size of the torus becomes bigger and bigger, the gaps between eigenvalues
vanish). For example, we have cubic Nonlinear Schrödinger:

(i∂t −∆)ψ + ε|ψ|2ψ = 0

We can think of this equation through the lens of the linear wave equations with random
forcing by writing V = |ψ|2. But now there is a nonlinear coupling in the forcing.

We would like V to be O(1) in L∞, and to be random. At the initial time, we will
assume randomness. One of the major issues in the analysis will be in propagating the
randomness forwards. We will chose our scaling so that |ψ0|2 = O(1) in L∞.

To construct this random initial state, we work in a large box of size R and choose each
Fourier mode of ψ0 to be a Gaussian variable. Here, the spectrum is discrete, consisting of
k
R
for k ∈ Zd. Then, in the perturbation expansion, we will find an expression for |ψ(t)|2

in terms of polynomials in ψ̂0(k). This will allow us to use Wick’s rule without a priori
proving the propagation of randomness.
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2.4.1 Nonlinear Perturbation Theory

We will write a = eit∆ψ to conjugate by the free propagation. We denote the Fourier
modes by ak for k ∈ (Z/R)d. If we write |ψ|2ψ = ψψψ, we can see which terms will need
to be convolved on the Fourier side. The NLS becomes:

∂tak =
iε

R2d

∑
k=k1−k2+k3

ak1ak2ak3e
it(k21+k23−k22−k2) (2.4)

The normalization constant 1/R2d comes from the normalization in L∞, Rd as well as the
normalizations of the three sums, 1/R3d.

Integrating this in time, we obtain the analogue of our first Duhamel iteration from
the linear case. We can then substitute the equation back in for ak1 , ak2 , and ak3 to
compute the Duhamel expansion.

In this expansion, we are making a splitting from k into three branches k1, k2, and
k3. We have the relation k+ k2 = k1 + k3 from the convolution, and the exponential adds
high oscillations unless we are near k2 + k2

2 ∼ k2
1 + k2

3, providing quasiresonance.
Contrast this with the linear case, where we found the elementary Duhamel iteration.

If we write the corresponding formulas for the Fourier modes, we find

∂tak = iε
∑

k=k1+k2

Vk1ak2e
it(k22−k2)

At each step of the iteration, we kept adding to the same term. In the case for the
NLS, the iterated Duhamel formula blows up into a tree with many branches where we
substitute back in for ak1 , ak2 , and ak3 .

k
k1

k2 k
+

k2

−
k1+

k3+

Figure 2.7: Left: The linear iteration. Right: Nonlinear iteration splitting.

Then observables manifest in pairs of trees with signed edges (corresponding to the
presence of a conjugate). We still have a Wick’s rule for these trees: the nonzero terms
of the expansion may be represented by couples where we pair the end nodes of the
trees, pairing conjugated terms with nonconjugated terms and never pairing two nodes
stemming from the same direct parent.

In the NLS situation, we may remove trivial branchings such as k → (k, k2, k2) by
subtracting a phase shift ψ

∫
|ψ|2. The potential becomes Ṽ = |ψ|2 −

∫
|ψ|2, and these

branchings have akak2ak2 = 0.
It is important to remark that we still do not have a clear method with which to stop

the expansion. We do not have the unitarity of the propagator that we had in the linear
case. Still, we can analyze the leading order terms of the expansion.

2.4.2 Leading Order Terms

In the kinetic time scale t = O(ε−2), we can obtain the derivative at time 0 from the
term of order ε2 in the perturbation expansion. Then, we will have to check that the
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k
+

+

−

+

+
−

+ −
+

−+
−

+

−k′
−

−
+

−
−

+

−
×

Figure 2.8: A pair of trees with the beginning of a coupling. Signs must be opposite. Due
to the phase shift, nodes on the same branch do not couple.

higher order terms can be expressed as “combinations" of these terms of size ε2. This
is in analogy to how the ladder graphs in the linear case contributed the leading order
terms, and the higher order terms corresponding to crossings and repetitions could be
understood in terms of the ladder graphs.

In the NLS case, there are two types of pairings of trees which contribute to leading
order terms. First, we have the “(a)-operations," which are pairings of the same branching:
kj is coupled with −k′j. These are the counterparts of the ladder graphs from the linear
setting. Second, we have the “(b)-operations," pairings with one tree with no branchings,
and another tree with two branchings. The picture makes it easier to see the pairing, but
we record it here as well. Call k the node on the first tree, call k2 and −k3 the endnodes
on the first branching of the second tree, and call −k1

1, k2
1, and −k3

1 the endnodes of the
second branching on the second tree. The coupling is (k,−k1

1), (k2
1,−k3), and (−k3

1, k2).
This pairing is the counterpart of a repetition from the linear setting.

k

+

+
−

+

−k

−

−
+
−

k

+

−k′

−−

+
−−

+
−

Figure 2.9: The two leading order tree pairings. Colours indicate the coupling. Left:
An (a) operation, the counterpart of the ladder graph. Right: A (b) operation, the
counterpart of the repetition.

Using these two kinds of pairings, we can extract all of the order ε2 terms in the
perturbation expansion and take the kinetic limit.

Next, we can look at the order ε4 terms. These terms either come from diagrams
which are composed of (a) and (b) operations, or from diagrams which are not. We can
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see that diagrams which are not are necessarily under more constraints for the pairing,
and hence contribute less to the expansion. See the examples in Figures ?? and ?? below.

fig:nonregCouple

k

` m

−k′

P PG GB BY YR R

Figure 2.10: Non-regular couple: Not made from (a) and (b) operations.

In Figure ??, we have a coupling of trees which does not originate from composing
(a) and (b) operations. Remember that each note corresponds to constraints on the
wavenumbers in the iterated Duhamel expansion (where these constraints are demanding
some massive convolution). If we write down the constraints imposed on the wavenumbers
at each node, we’ll find dependencies between the constraints. We get (d + 1) at each
node, d relations from conservation of momentum (k + k2 = k1 + k3) coming from our
convolution and 1 relation from conservation of energy (k2 + k2

2 = k2
1 + k2

3) coming from
the quasiresonant mechanism. There are 3 distinct nodes, k, `, and m. So we get 3(d+ 1)
relations.

fig:regCouple

k

`

k

−k′

PPG GB BY YR R

(b)

(b)

(a)

(a)

Figure 2.11: Regular couple: Made from two (a) and two (b) operations.

In Figure ??, we have a coupling of trees which originates from composing two (a)
and two (b) operations. If we write down the constraints imposed on the wavenumbers
at each node, we’ll find that the top left and bottom left splitting points contribute the
same constraints. We get 2(d + 1) instead of 3(d + 1) relations. Since there are less
constraints, there are many more possible wavenumbers that obey this coupling. Hence
the contribution of these regular terms is much more than the contribution from the
non-regular couplings.
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2.4.3 The Diffusion Limit

2.5 Lecture 4: Kinetic Equations for Wave Turbulence

add references to chapter of Colm
Our main assumptions are the following:

• Randomness of initial data (so that we may apply Wick’s rule)

• Smallness of the nonlinearity: ε� 1

• Continuous (or almost continuous) spectrum for the wave operator. In the case of
the Laplacian in a box, we must have the box size R � 1. This is to give us the
quasiresonant mechanism.

For short kinetic times, under the appropriate scaling assumptions on ε and R, we use
the leading order ε2 terms in the perturbation expansion to derive a kinetic equation.

For the cubic nonlinear Schrödinger equation, there is no forcing or dissipation, and
there is no spatial inhomogeneity. We find the following 4-wave interaction:

∂tf =

∫
ff1f2f3

(
1

f
+

1

f1

− 1

f2

− 1

f3

)
|V |2δk+k1

k2+k3
δ
|k|2+|k1|2
|k2|2+|k3|2dk1dk2dk3

where fj = f(kj). (Note that k1 and k2 have switched places from the notation in Lecture
3. We should probably fix this!) V represents microscopic interactions, the first delta
represents conservation of momentum, and the second delta represents the quasiresonant
mechanism. Depending on the original nonlinearity and on the dispersion relation ω, it
is also common to find 3-wave interactions :

∂tf =

∫
ff1f2

(
1

f
− 1

f1

− 1

f2

)
|V |2δkk1+k2

δωkωk1+ωk2
dk1dk2

2.5.1 Main Features of the Kinetic Equations

In these notes, we will focus on the 4-wave interactions.

2.5.1.1 Conservation Laws

First, we want to analyze conservation laws. For the 4-wave interactions, the conserved
quantities may be interpreted as invariants under collisions. We will see that these are
1, k, and ωk. If we define Q(f, f) to be the right hand side of the 4-wave interaction
kinetic equation with no microscopic interactions (V = 1), then testing against some φ,
we can use the symmetry between k and k1 and then use the symmetry between (k, k1)
and (k2, k3) to find:∫

Q(f, f)ϕdk =

∫
ff1f2f3

(
1

f
+

1

f1

− 1

f2

− 1

f3

)
ϕδ∆kδ∆ωdkdk1dk2dk3

=

∫
ff1f2f3

(
1

f
+

1

f1

− 1

f2

− 1

f3

)(
ϕ+ ϕ1

2

)
δ∆kδ∆ωdk · · · dk3

=

∫
ff1f2f3

(
1

f
+

1

f1

− 1

f2

− 1

f3

)(
ϕ+ ϕ1 − ϕ2 − ϕ3

4

)
δ∆kδ∆ωdk · · · dk3
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Now when ϕ = 1,
∫
Q(f, f)1dk = 0, when ϕ = k, the first delta kicks in and

∫
Q(f, f)kdk =

0, and when ϕ = ωk, the second delta kicks in and
∫
Q(f, f)ωkdk = 0. Since testing the

kinetic equation against any of these quantities makes the right hand side vanish, they
provide d+ 2 collision invariants (d comes from testing with k).

Remarks:

• For the 3 wave interactions, there will be no conservation of mass (we don’t get a
conserved quantity by testing against 1).

• These conservation laws are a key ingredient in taking the diffusive limit.

2.5.1.2 Entropy

Next, we want to see where entropy shows up in the 4-wave interaction kinetic equation.
Now, test Q(f, f) against the function ϕ = 1/f . We apply the previous identity to find∫

Q(f, f)
1

f
dk =

1

4

∫
ff1f2f3

(
1

f
+

1

f1

− 1

f2

− 1

f3

)2

δ∆kδ∆ωdkdk1dk2dk3 ≥ 0

Since ∂t(− log f) = −Q(f, f) 1
f
, we find that

∂t

(
−
∫

log fdk

)
= −

∫
Q(f, f)

1

f
dk ≤ 0

We have found that −
∫

log fdk provides a Lyapunov functional for the equation, and thus
that the dynamics are irreversible. The entropy is given by − log f . This suggests relax-
ation to some equilibrium state, which will be characterized by the conserved quantities:
the mass, the momentum, and the energy.

2.5.1.3 Mathematical results concerning the Cauchy problem

We enumerate some of the results concerning the Cauchy problems for both the Boltz-
mann equation and the 4-wave interaction kinetic equation for the purposes of comparison
in Figure ??.

Further references:
we may expand a bit more the discussion of these references

• 4-wave interactions, isotropic solutions f(k) = f(|k|):

– Escobedo-Velazquez
∗ Global existence of measure-valued solutions
∗ Condensation can occur for infinite time. Most of the energy is transported

to high frequencies as t→∞.
– Kierkels-Velazquez: Model taking into account the condensate.

• 3-wave interactions, isotropic solutions:

– Nguyen-Tran: Global existence with dissipation.
– Soffer-Tran: Special class of solutions with energy flowing at infinity.
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table:kineticEqn

Boltzmann equation 4 wave interaction kinetic equation

Conserved quantities: mass
∫
fdv, mo-

mentum
∫
fvdv, energy

∫
f |v|2dv

Same conserved quantities.

Entropy:
∫
f log fdv. This prevents

concentrations.
Entropy:

∫
log fdv. No information on

the large scale. Could possibly allow
concentrations?

Global solutions: solutions close to equi-
libria (Ukai) (Maxwellian distributions)

• Spectral information on the lin-
earized collision operator

• ∂ty = −λy + y2 (Fujita-Kato solu-
tions for Navier Stokes)

Equilibria are not nice functions

• Conserved quantities (Rayleigh-
Jeans)

• Even more complicated solutions
(Zakharov)

Solutions with finite entropy and energy

• Control on entropy and entropy
dissipation

• Renormalization (Di Perna-Lions)

Entropy bound is bad

Local solutions:

∂tf + v · ∇xf = Q(f, f)

∂ty = y2. f in some weighted L∞ space
permits local solutions, with blowup af-
ter a finite time.

Local solutions: Theorem (Germain-
Ionescu-Tran) says that there are local
solutions in L∞s , s > 2, with time T &
‖f0‖−2

L∞s
. The proof uses Strichartz esti-

mates with a TT ∗ argument. What is
this last thing?

The derivation is done in the same set-
ting as the derivation of the Boltz-
mann equation from a system of parti-
cles (Lanford) with a perturbation ex-
pansion

y = y0 +
t

2
y2

0 +
t2

2
y3

0 + · · ·

Derivation done with a perturbative ex-
pansion (Deng-Hani). Requires a lot of
regularity on initial data. Convergence
on short kinetic times.

Figure 2.12: Comparison of the Boltzmann and the 4-wave interaction kinetic equation.
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2.6 Appendix on Spectral theory

Spectral theory is the generalisation of matrix diagonalisation with general linear opera-
tors on infinite dimension space. The infinite dimensional space that we will consider is
the space of finite energy

L2 :=

{
u : Ω→ C | ||u||2L2 :=

∫
Ω

|u|2 <∞
}

where the domain Ω ⊂ Rd could be bounded (including torii) or unbounded. The notation
(·, ·)L2 stands for the usual inner-product of L2. In the finite dimension case i-e matrix case
(L2 must be change for Rn), the spectrum is constituted of eigenvalues but in the general
it is not necessary the case. Indeed, it is possible to have a continuum of "generalised"
eigenvalues or more complicated stuff. Let H a linear operator on L2 :

H : D(H)→ L2

where D(H) is a sub-Hilbert space of L2 which is dense2, i-e D(H) = L2. We say that
H is a bounded operator iff there exits a constant C > 0 such that ||Hu||L2 ≤ C||u||L2

for all u ∈ L2 and we will denote by L(L2, L2) the space of linear bounded operator.
Otherwise, we say that the operator H is unbounded. Be careful, unbounded operator
has nothing to do with the fact that the domain Ω is bounded or not. For example the
Laplacian H = −∆ with

D(−∆) = H2 :=

u ∈ L2 | ||u||H2 :=

√
||u||2L2 + ||∇u||2L2 +

∑
i,j

||∂xi∂xju||2L2


is an unbounded operator.

The spectrum of H is defined by the closed set

σ(H) := {λ ∈ C | the linear operator H − λId is not invertible},

whereas the set of "discrete" eigenvalues is defined by

σd(H) := {λ ∈ C | dim[Ker(H − λId)] ∈ (0,+∞)} ⊂ σ(H),

but be not injective is note the sole way to not be invertible. Thus, the spectra is also
constituted by

σess(H) := σ(H)/σd(H)

= {λ ∈ C |Ker(H − λId) = 0 and Ran(H − λId) 6= X or dim[Ker(H − λId)] = +∞)},

which is called essential spectrum. Noticing that 0 can either be an "eigenvalue"
with infinite multiplicity or an accumulation point of the spectrum without being itself
an eigenvalue so that it is either in the essential spectrum either not in the spectrum.
Showing that there exists essential spectrum could be a difficult task. For the moment,
we should focus on operator which only admit discrete spectrum. Infinite linear operator

2The set A will alway refers to the topological closure of the set A.
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behaves like matrix if it has a compact resolvent. The resolvent of H in ω /∈ σ(H) is
defined by

R(ω) := (H − ωId)−1.

The spectrum can also be seen as the value where the resolvent cannot be a bounded
operator of L2 since

||R(ω)u||L2 = dist(ω, σ(H))−1||u||L2 .

Don’t worry about the definition of "compact". Intuitively, compact means that it
behaves like finite dimension. Rigorously, a compact operator is the strong limit of a
sequence of finite rank operators. An infinite linear operator of degree at least one, i-
e there at least one derivative, which act on a bounded domain Ω has automatically a
compact resolvent3. But it is not necessary the case when the domain Ω is unbounded or
when it has degree 0. For example, in infinite dimension the identity operator cannot be
compact4.

Proposition 2.6.1. If H has compact resolvent, then it spectrum contains only an
infinite countable sequence of non-null eigenvalues (λj)j. Moreover, the space L2

admits an orthonormal basis consisting of normalized eigenvectors (ψj)j of H associated
to each eigenvalue , i-e solution of

Hψj = λjψj. (2.5) compact-eigen

If H is a compact operator, then it spectrum contains a countable sequence of non-null
eigenvalues and possibly 0 which is in the essential spectrum.

For example, if we take H = −∆ on the torus TdL/2π = [0, L/2π]d, the eigenval-
ues/eigenfunctions are given by (

∣∣ k
L

∣∣2 , ei k·xL ) ∈ ZdL × L2([0, L/2π]d) since we have the
following diagonalization of the laplacian

−∆(ei
k·x
L ) =

∣∣∣∣ kL
∣∣∣∣2 ei k·xL for all k ∈ Z.

2.6.1 A first excursion in the continuous spectrum world

In the previous example, i-e the laplacian on the torus, the eigenvalues are given by
∣∣ k
L

∣∣2.
When L growth, the distance between the eigenvalues becomes smaller and smaller. At
the end, when L → ∞, we expect to see a continuum of spectral values. Indeed, as we
already says, on Rd, the Fourier transform of the Laplacian gives

−∆(eiξ·x) = |ξ|2eiξ·x for all ξ ∈ R. (2.6) Laplacien-diag

where |ξ|2 are seen as spectral values for all ξ ∈ R (i-e σ(−∆) = R+) and eiξ·x the
"generalized" eigenfunctions associated to |ξ|2. The modes eiξ·x are not finite energy
L2 but live in a weighted space

L2
−s = {ψ ∈ L2 | (1 + x2)−

s
2ψ ∈ L2} for any s > 1

2
.

3More precisely, the resolvent R(ω) : L2 → D(H) could be seen as a bounded isomorphism of L2. If
the embedding D(H)→ L2 is compact, then the resolvent is automatically compact. It is the case, thank
to Rellich embeddings, when H has at least one derivative act on a bounded domain Ω.

4This one of Riesz theorem.
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The usual inner-product of L2 can extend to the "distribution" product

< u, v >−s,s:=

∫
u(x)v(x) dx =

∫
u(x)

(1 + x2)
s
2

(1 + x2)
s
2v(x) dx ∀u ∈ L2

−s, v ∈ L2
s,

where
L2
s = {ψ ∈ L2 | (1 + x2)

s
2ψ ∈ L2} for any s > 1

2

is seen as the "dual" space of L2
−s. The diagonalization of the laplacian (2.6) can be read

in the weighted functional framework we have just given as

< eiξ·x,−∆v >−s,s= |ξ|2 < eiξ·x, v >−s,s, ∀v ∈ L2
s.

Thus, more generally, the definition (2.5) of eigenvectors for compact operator can be
generalized our case by

< ψξ, Hv >−s,s= λξ < ψξ, v >−s,s, ∀v ∈ L2
s.

This is why we call ψξ ∈ L−s a "generalized" eigenvector.

A second example is given by operator H = −∆ + V (x) on Rd with a V a periodic
function on the cell X = [0, 2π)d. Instead of looking for Fourier modes superposition,
we can look for Bloch modes superposition. A Bloch mode, or Bloch wave, for any
k ∈ X ′ := [0, 1)d and m ∈ N∗ the a function

eik·xφk,m

where (φk,m)m is a basis of periodic function of L2(X) given by the eigenvalues problem{
[−(∆ + 2ik · ∇ − |k|2) + V ]φk,m = λk,mφk,m

φk,m is a periodic function on the cell X = [0, 2π)d
(2.7)

It is indeed an eigenvalues problem since the shifted operator [−(∆+2ik ·∇−|k|2)+V ] on
the periodic domain X has a compact resolvent. Moreover, since the shifted operator is
self-adjoint, the eigenvalues are real. Thus, any function u ∈ L2(Rd) can be be decomposed
as a superposition of Bloch modes

u(x) =

∫
X′

∞∑
m=1

uk,me
ik·xφk,m(x)dk with uk,m =

∫
R
u(x)e−ik·xφk,m(x)dx,

and the operator H acts on any function u ∈ D(H) as

Hu(x) =

∫
X′

∞∑
m=1

λk,m uk,me
ik·xφk,m(x)dk since H(eik·xφk,m(x)) = λk,m e

ik·xφk,m(x).

The function Fb[u](x, k) =
∑∞

m=1 uk,mφk,m(x) ∈ L2(X ×X ′) is called the Floquet-Bloch
transform5 of u and plays similar role as Fourier transform in case of periodic coefficients.

5The Floquet-Bloch can be extend by periodicity on an isometry L2(Rd)→ L2(Rd × Rd).
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We can show that the maps k 7→ λk,m, called band functions, are lipshitz such that the
spectrum

σ(H) =
∞⋃
m=1

[
min
k∈X′

λk,m,max
k∈X′

λk,m

]
have a band structure. The pairs (λk,m, e

ik·xφk,m) are "generalized" eigenvalues / eigen-
functions associated to H = −∆ + V (x).

The study of continuous spectrum and its "generalized" eigenvectors is easier for self-
adjoint operator. We defined the adjoint operator H∗ of H by

(Hu, v)L2 = (u,H∗v)L2 ∀u ∈ D(H), v ∈ D(H∗)

with domain

D(H∗) :=: {v ∈ L2 | ∃w ∈ L2, (Hu, v)L2 = (u,w), ∀u ∈ D(H)}

An operator H is called

• self-adjoint iff Hu = H∗u for all u ∈ D(H),

• skew-adjoint iff Hu = −H∗u for all u ∈ D(H).

Be careful, to show that H is self-adjoint (or skew-adjoint), it is not enough to remark
that H is hermitian, i-e (Hu, v)L2 = (u,Hv)L2 , (or skew-hermitian, i-e (Hu, v)L2 =
−(u,Hv)L2), but it also necessary to ensure that D(H) = D(H∗). If H is hermitian
(or skew-hermitian) and if there exists ω ∈ C such that H − ωId and H − ωId are onto,
then H is self-adjoint (or skew-adjoint) and ω, ω /∈ σ(H). If H is self-adjoint, then the
spectrum is real and is included in the closure of numerical range:

σ(H) ⊂ {(Au, u)L2 |u ∈ L2, ||u||L2 = 1}.

Note that H is self-adjoint iff iH is skew-adjoint. In particular, if H is skew-adjoint,
then it spectrum is purely imaginary. When the linear operator is self-adjoint, some
tools are devoted to the description of essential spectrum like Weyl’s sequences6, spectral
measures or Mourre theory when there exists a commutator estimates. We deal about
spectral measure and Mourre theory later on. When the operator is not self-adjoint, the
spectrum could becomes unstable by perturbation. It is why, in that context, the notion
of pseudo-spectrum7 could be better.

6When the operator is H self-adjoint, Weyl gives a criterium to know if a spectral value is in the
discrete spectrum or in the essential spectrum :

• spectrum

σ(H) = {λ ∈ R | ∃(un)n ⊂ D(H), ||un||L2 = 1 and ||(H − λ)un||L2 →
n→∞

0},

• essential spectrum

σess(H) = {λ ∈ R | ∃(uλn)n ⊂ D(H), ||uλn||L2 = 1, uλn ⇀
n→∞

0 and ||(H − λ)uλn||L2 →
n→∞

0},

where ⇀ stands for the L2-weak limit, i-e un ⇀
n→∞

u iff ∀φ ∈ L2, (un, φ) →
n→∞

(u, φ). Such a sequence

(uλn)n is called a Weyl sequence.
7The δ-pseudo-spectrum is

σδ(H) := {λ ∈ C | ∀u ∈ L2, ||R(λ)u||L2 > δ−1||u||L2} = {λ ∈ C | ∃P ∈ L(L2, L2),∀u ∈ L2, ||Pu||L2 < δ||u||L2 , λ ∈ σ(H+P )}
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2.6.2 Spectral measure of self-adjoint operators

To describe more precisely the continuous spectrum of self-adjoint operators, it could be
judicious to do some links withmeasure theory. A measure µ can be seen as an integral.
We will assume that H is self adjoint such that, thank to spectral theorem, we can
associate at each u ∈ D(H) a finite measure µu supported 8 in σ(H) ⊂ R defined by

(Hu, u)L2 =

∫
σ(H)

λdµu(λ).

We can define the polarisation form of the spectral measure

d(Eλu, v)L2 :=
1

2
(dµu(λ) + dµv(λ)− dµu−v(λ)) .

Eλ : L2 → L2 is an orthogonal projection of L2 which support9 is the spectrum supp(Eλ)λ∈R =
σ(H). The family (Eλ)λ is often called the spectral family associated to H and could be
seen as a cumulative distribution function10. As we will see later, it can also be seen as
the spectral projector on (−∞, λ]. The operator can be formally written

H =

∫
σ(H)

λdEλ,

which rigorously means{
D(H) = {u ∈ L2 |

∫
σ(H)

λ2dµu(λ) < +∞},
(Hu, v)L2 =

∫
σ(H)

λd(Eλu, v).

The easiest spectral measure to construct is the sum of Dirac functions associated
to an self-adjoint operator with compact resolvent. Recall that, in that case, H have
an infinite countable sequence of real eigenvalues (λj)j. The spectral measure and the
operator are given by

µu =
∑
j

u(λj)δλj and (Hu, v)L2 =
∑
j

λju(λj)v(λj).

and a δ-pseudo-eigenfunction associated to λ ∈ σδ(H) is a function u ∈ L2 satisfying ||Hu− λu||L2 < δ.
8The support of a measure µ can be defined as

supp(µ) := {S ⊂ R |
∫
S

dµ = 0}

9The support of a family of spectral projection can be defined as

supp(Eλ)λ∈R = {µ ∈ R | ∀ε > 0, Eµ+ε − Eε 6= 0}

10A spectral family (Eλ)λ is a family of orthogonal projection satisfying:

• the family is non-decreasing Eλ1Eλ1 = Emin(λ1,λ2)

• the family is strongly right continuous Eλ+0 := limε→0+ Eλ+ε = Eλ
• limλ→−∞ Eλ = 0 and limλ→+∞ Eλ = Id
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An other exemple is given by Fourier transform of H = −∆ on the full space Rd with
continuous spectrum on the positive real σ(H) = {|ξ|2 | ξ ∈ R} = R+. In that case, using
the definition of the spectral measure and the Parseval equality, one gets

(Hu, u)L2 =
1

2π
(Ĥu, û)L2 =

1

2π

∫
Rd
|ξ|2|û(ξ)|2 dξ =

1

2π

∫ ∞
0

|ξ|2
(
|ξ|d−1

∫
Sd−1

|û(|ξ|θ)|2dθ
)
d|ξ|

by the change of variable λ = |ξ|2, we have

(Hu, u)L2 =
1

2π

∫ ∞
0

λ

(√
λ
d−1

∫
Sd−1

|û(
√
λθ)|2dθ

)
dλ

2
√
λ

thus we can state

dµu(λ) =

√
λ
d−2

4π

∫
Sd−1

|û(
√
λθ)|2dθ (2.8) measure-laplacian

to obtained
(Hu, u)L2 =

∫
R+

λdµu(λ).

The first example is an example of purely punctual measure whereas the second one is an
example of absolutely continuous measure, In general, any measure can be decomposed
as

µ = µpp + µac + µsc

where

• µpp refers to purely punctual measure, i-e a sum of Dirac delta function

• µac refers to absolute continuous measure, i-e there exits a locally integrable
function ρ such that for any g ∫

R
gdµ =

∫
R
gρdx

where dx refers to the usual lebesgue measure.

• µsc refers to singular continuous measure, i-e forall x ∈ R, one gets µsc({x}) = 0
and there exists a borelian set S such that∫

R/S
dx = 0 and µsc(S) = 0,

In consequence we can decompose the spectral measure on this way. It imply a new
decomposition of the space L2

L2 = Hpp ⊕Hac ⊕Hsc

where

• Hpp := {u ∈ L2 | the spectral measure µu is purely punctual}

• Hac := {u ∈ L2 | the spectral measure µu is absolute continuous}

• Hsc := {u ∈ L2 | the spectral measure µu is singular continuous}
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and the spectrum
σ(H) = σpp(H)⊕ σac(H)⊕ σsc(H)

where

• (purely ponctual spectrum) σpp(H) := σ(H|Hpp)

• (absolute continuous spectrum) σac(H) := σ(H|Hac)

• (singular continuous spectrum) σsc(H) := σ(H|Hsc)

Consider the free linear Schrödinger equation{
i∂tu+Hu = 0,

u(0) = u0 ∈ L2.
(2.9)

Since the operator −iH is skew-adjoint, the Stone theorem sates that there exists a group
11 (e−itH)t∈R of bounded operator of L2 such that the solution is given by

u = e−itHu0.

The long time dynamic is driven by the spectral measure of the initial condition:

• initial condition with purely punctual mesaure u0 ∈ Hpp

lim
R→+∞

sup
t≥0

∫
Rd/[−R,R]

|e−itHu0(x)|2dx = 0

• (Riemann-Lebesgue) initial condition with absolutely continuous measure u0 ∈ Hac

lim
t→+∞

∫
[−R,R]

|e−itHu0(x)|2dx = 0

• (RAGE) initial condition with singular continuous measure u0 ∈ Hsc

lim
T→+∞

1

T

∫ T

0

∫
[−R,R]

|e−itHu0(x)|2dx = 0.

As we see in RAGE theorem, the singular continuous spectrum is the bad guy. As we
will see later on, the Mourre theory gives a nice tool to have only punctual spectrum or
absolute continuous spectrum.

11More precisely, the family (e−itH)t∈R is a strongly continuous group of L2 in the sense that

• ∀t ∈ R, e−itH ∈ L(L2, L2) ,

• e−itH is invertible with (e−itH)−1 = e+itH ,

• e−itH ◦ e−isH = e−i(t+s)H ,

• e−itH|t=0 = Id and ∀u ∈ L2, limt→0 ||e−itHu− u|| = 0.
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More generally, the spectral measure of self-adjoint operators is suitable to define a
"functional calculus" of the operator H: for any real continuous function φ, we have

φ(H) =

∫
R
φ(λ)dEλ,

which is mean {
D(φ(H)) = {u ∈ L2 |

∫
R φ(λ)2dµu(λ) < +∞},

(φ(H)u, v)L2 =
∫
R φ(λ)d(Eλu, v).

In particular, one gets
σ(φ(H)) = φ(σ(H)).

If the spectral measure associated to H is absolutely continuous dµHu (λ) = ρHu (λ)dλ and if
φ is a non-singular diffeomorphism, then the spectral measure associated to f(H) is also
absolutely continuous

dµφ(H)
u (λ̃) = ρφ(H)

u (λ̃)dλ̃ with ρφ(H)
u (λ̃) :=

(
ρHu
φ′

)
◦ φ−1(λ̃).

In particular, since we know the spectral measure of −∆ (see (2.8)), we know the spectral
measure of (−∆)α which is

dµ(−∆)α

u (λ̃) =
λ̃
d+1
2α
−1

4π

∫
Sd−1

|û(λ̃1/2αθ)|2dθ

Some functions φ can be very interesting, for example:

• (Frequencies cut-off.) If φ = 1(a,b], we have the the spectral projector

E((a, b]) := Eb − Ea = 1(a,b](H) =

∫ b

a

dEλ.

• (Phase shift.) If φ(λ) = e−itλ, we have the propagator

e−itH =

∫
R
e−itλdEλ,

which is the flow of the Schrödinger equation i∂tu+Hu = 0.

• (Oscillation / resonance.) If

φt(λ) =

{
1−e−i(ω0−λ)t
i(ω0−λ)

if ω0 − λ 6= 0,

t if ω0 − λ = 0.

then we have the Duhamel formula, that is to say

u(t) = eiω0t φt(H)f = eiω0t

∫ t

0

ei(s−t)(ω0Id−H)fds,

is the solution of the monochromatic forced Schrödinger equation i∂tu+Hu = ifeiω0t

with null initial condition and with f a regular enough function.
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• (Resolvent.) If φ(λ) = (λ− ω)−1 for any ω /∈ σ(H) we have the resolvent

R(ω) := (H − ωId)−1 =

∫
R
(λ− ω)−1dEλ. (2.10) resolvent-spectral

The last equation can have a kind of inversion formula, called the Stone formula

E((a, b]) = Eb − Ea =
−1

2iπ
lim
ε→0+

lim
δ→0+

∫ b+ε

a+ε

[
R(ω − iδ)−R(ω + iδ)

]
dω (2.11) Stone

which is particularly suitable to find the spectral projectors and thus the spectrale mea-
sure. Note that in the Stone formula, the order of two limits is important. For the discret
spectrum, we can obtain the projector on one eigenvalue λ ∈ σd(H) by

E({λ}) := Eλ − lim
ε→0

Eλ−ε =
−1

2iπ

∫
Cλ
R(z)dz,

where Cλ is any loop which surrounded λ and do not surround or touch an other value of
the spectrum. Note also that the rank of E({λ}) is the multiplicity dim[Ker(H −λId)] of
the eigenvalue λ.

2.6.3 Mourre theory

One goal of Mourre theory is to give a simple way to ensure that there exists essential
spectrum which additionally must be absolute continuous. Moreover, it will give a nice
way to compute the absolute spectral measure thanks to the resolvent and thus to describe
"generalized" eigenfunctions and the long time behavior of forced Schrödinger equation.
These is impossible to gives uniform estimates of the resolvent R(ω) when ω is very
closed to the real axis since ||R(ω)u||L2 = dist(ω, σ(H))−1||u||L2 but it is possible for the
weighted resolvent (1 + D2)−

s
2R(ω)(1 + D2)−

s
2 where D is a self-adjoint operator which

satisfy a commutator estimate with H. This commutator estimate could be technical to
show. It is why we will give a translation in term of escape function associated to the
"geometrical optic" approximation of the operator H. "Geometrical optic" can be seen
as high frequency study of H and use microlocal analysis.

Mourre-thm Theorem 2.6.1. (Mourre theorem) Let I a closed bounded subset of R. If there exists
a self-adjoint operator D, a H-compact operator K, a positive number α > 0 and a real
function χ ∈ C∞(R) with suppχ = I such that{

( H is D-smooth) i[H,D] := i(HD −DH) ∈ L(D(H) ∩D(D);L2)

(commutator estimate) χ(H)i[H,D]χ(H) ≥ αχ(H) +K

then

(i) the discrete spectrum is finite in I,

(ii) the essential spectrum in I only contains absolute continuous spectrum,

(ii) for all ω ∈ I/σd(H), the "boundary values" of the resolvent

R(ω ± i0) := (H − ωId± i0)−1 = lim
δ→0

(H − ωId± iδ)−1 ∈ L(L2
s, L

2
−s)
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are correctly defined in weighted spaces for s > 1/2

Ls := {f ∈ L2 | (1 +D2)
s
2f ∈ L2} ⊂ L2 ⊂ L−s := {f | (1 +D2)−

s
2f ∈ L2}.

Moreover ω 7→ R(ω ± i0) is Hölder continuous12

C0, 2s−1
2s

(
I/σp(H), L(L2

s, L
2
−s)
)
.

Before describing the hypothesis, let us comment the result. The weighted spaces L2
−s

and L2
s are crucial. Indeed, when ω ∈ Iac := σac(H) ∩ I, the resolvent R(ω ± iδ) doesn’t

have a limit in L(L2, L2) as δ → 0 since ||R(ω ± iδ)u|| = δ−1||u||. However,∫
R(ω ± iδ)uu

can have a limit as δ → 0 when u ∈ Ls. Indeed, for u ∈ Ls ∩Hac, one gets with (2.10)

< 1IacR(ω ± iδ)u, u >−s,s=
∫
Iac

ρu(λ)

λ− ω ∓ iδ
dλ

where dµu(λ) = ρu(λ)dλ is the (absolutely continuous) spectral measure associated to
u ∈ Hac and when δ vanish, the left hand side term must be seen as a singular integral∫

Iac

ρu(λ)

λ− ω ∓ iδ
dλ →

δ→0
±iπρu(ω) + P

∫
Iac

ρu(λ)

λ− ω
dλ.

where we can use the Sokhotski–Plemelj theorem since the function λ 7→ ρu(λ) is Hölder
continuous and where P refers to Cauchy principal value13. Then, by Stone formula
(2.11), if the projector Eλ is not seen as a L2 map but as a map from Ls to L−s, one gets
for (a, b] ∈ Iac

E((a, b]) =
1

2iπ
lim
δ→0

∫ b

a

[R(λ− iδ)−R(λ+ iδ)]dλ =

∫ b

a

E′(λ)dλ

with spectral density

E′(λ) :=
1

2iπ
[R(λ− i0)−R(λ+ i0)] ∈ L(Ls, L−s) for λ ∈ Iac.

12A function f is α-Hölder continuous with α ∈ (0, 1] on I if

||f ||C0,α(I) := sup
I
|f |+ sup

x6=y∈I

|f(x)− f(y)|
|x− y|α

is finite.
13If ρ is a Hölder continuous function around ω and integrable on real interval I, the Cauchy principal

value can be computed as

P
∫
I

ρ(λ)

λ− ω
dλ =

∫
I/(ω−ε,ω+ε)

ρ(λ)

λ− ω
dλ+

∫ ω+ε

ω−ε

ρ(λ)− ρ(ω)

λ− ω
dλ
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We can of course extend E′(λ) on I/σd(H) by taking E′(λ) = 0 when λ /∈ σ(H). Conse-
quently, we can define a functional calculus on weighted space Ls for φ a bounded
continuous function supported in I

< φ(H)u, v >−s,s =

∫
Iac

φ(λ) < E′(λ)u, v >−s,s dλ

+
∑

λp∈σd(H)∩I

φ(λp)
(
E({λp})u, v

)
L2

∀u, v ∈ Ls (2.12) functional-calculus-wieghted

In particular, we have the spectral measure for u ∈ Ls ∩Hac

dµu(λ) = ρu(λ)dλ with ρu(λ) =< E′(λ)u, u >−s,s .

The following proposition summaries the interesting ideas on spectral measures and "gen-
eralized" eigenvectors in the context of Mourre theory.

Proposition 2.6.2. Let the assumptions of Mourre theorem satisfied on I = [a, b].

• If λ ∈ I ∩ σd(H), then
µu(λ) = u(λ)δλ.

Moreover for all u ∈ L2, the eigenvector uλ := E({λ})u ∈ Hpp is solution of

Huλ = λuλ.

• For all λ ∈ I/σp(H) and u ∈ Ls, one gets

dµu(λ) = ρu(λ) dλ

with the Hölder continuous function

ρu(λ) :=
1

2iπ

〈[
R(λ− i0)−R(λ+ i0)

]
u , u

〉
−s,s.

Moreover for all u ∈ Ls and for λ ∈ σac(H), the "generalized" eigenvector

uλ := E′(λ)u ∈ L−s ∩Hac

with
E′(λ) :=

1

2iπ
[R(λ− i0)−R(λ+ i0)] ∈ L(Ls, L−s)

is solution of
< uλ, Hφ >−s,s= λ < uλ, φ >−s,s ∀φ ∈ Ls.

The difficult part to ensure the assumptions of Mourre theorem is to show the com-
mutator estimates. This can be done easily with escape functions. For sake of simplicity,
we will assume until the end that the domain Ω is the full space Rd. To explain
what is an escape function, one needs to recall some stuff on symbols of pseudo-differential
operator. As we already says, the symbol h ∈ Rd×Rd of the operator H can be defined
as it action on Fourier modes

Heix·ξ = h(x, ξ)eix·ξ.
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Moreover, the dynamic is mainly driven by the maximal derivative part of the operator
H so that we can focus on the principal symbol. The principal symbol h0 is defined as
the symbol of the maximal derivative part of the operator. More precisely, we say that
h0 is the principal symbol H of degree nH and h−1 it subprincipal symbol if the action of
H on rapidly oscillating function is given by the asymptotic expansion

Hei
x·ξ
ε = ε−nHh0(x, ξ)ei

x·ξ
ε + ε−nH+1h−1(x, ξ)ei

x·ξ
ε +O(ε−nH+2).

We can associate at h0 an operator Op(h0) := F−1h0F . One advantage to work with
principal symbols is that the remainder H − Op(h0) is a H-compact operator. Let us
recall the definition of H-compact operator. An operator K is H-compact operator iff
D(H) ⊂ D(K) and if there exists ω /∈ σ(H) such that the operator KR(ω) : L2 → L2

is a compact operator. In particular, if H and Op(h0) are self-adjoint, then they share
the same essential spectrum14. An other advantage to work with principal symbols rather
than full symbols is that we can defined univocally the principal symbol of a composition
of operators. If H and D are operators of degree nH and nD, then the principal and
subprincipal symbols of HD is given by

HDei
x·ξ
ε = ε−(nH+nD)h0(x, ξ)d0(x, ξ)ei

x·ξ
ε

+ ε−(nH+nD)+1
[
h−1(x, ξ)d0(x, ξ) + h0(x, ξ)d−1(x, ξ) +∇ξh0 · ∇xd0(x, ξ)

]
ei
x·ξ
ε +O(ε−(nH+nD)+2).

where h0 is the principal symbol of H and d0 is the principal symbol of D. Similarly, we
can define the symbol of the commutator

i[H,D]ei
x·ξ
ε = ε−(nH+nD)+1{h0, d0}(x, ξ)ei

x·ξ
ε +O(ε−(nH+nD)+2).

where {h0, d0} is the Poisson’s bracket defined by

{h0, d0} := (∇ξh0 · ∇xd0 −∇ξd0 · ∇xh0).

In particular, we see that the commutator i[H,D] is an operator of degree (nH +nD)− 1.
The commutator estimate i[H,D] − K ≥ αId with K a H-compact operator can be
reads as {h0, d0} ≥ α since i[H,D] − Op({h0, d0}) is i[H,D]-compact and consequently
H-compact. Putmann show one part of the theorem (2.6.1) but he need a commutator
estimate of kind i[H,D] ≥ αId. Mourre add the compact operator K which allows
to use analysis on Rd × Rd with principal symbols rather than analysis with abstract
operators. For example, if H = −∆ on the full space Rd, then the generator of dilatations
D = −i(x · ∇) − Id/2 is a conjugated operator H which satisfy the assumption of the
Mourre theorem 2.6.1 since {h0, d0} = −2|ξ|2. Constructing by hand such symbol d could
be difficult. It is why the following theorem gives an interpretation of d as an escape
function of the hamiltonian dynamic associated to H.

escape-theorem Theorem 2.6.2. (Escape function theorem) Let H an operator of principal symbol h0

and I a bounded closed interval of R. We associate to h0 it hamiltonian dynamic, i-e
the solution (x(t), ξ(t)) ∈ Rd × Rd of{

ẋ = ∇ξh0

ξ̇ = −∇xh0.
(2.13) hamiltoneq

14One of Weyl’s theorem states that if H and K are closed self-bounded operators and K is H-compact,
then σess(H + K) = σess(H). Sometimes the set σkato(H) := ∩K compactσess(H + K) is called the Kato
spectra. When H is self-adjoint, one gets σess(H) = σkato(H), but it is not necessary true when H is not
self-adjoint.
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with initial condition (x0, ξ0) such that h0(x0, ξ0) ∈ I. Assuming first that there exists
a global solution (x(t), ξ(t)) at the previous equation. Assuming then that there exists a
function d0 of Rd × Rd such that the Poisson’s bracket with the principal symbol h0 of H
is coercive along the trajectories

{h0, d0}(x(t), ξ(t)) = (∇ξh0 · ∇xd0 −∇ξd0 · ∇xh0)(x(t), ξ(t)) ≥ α > 0 ∀t� 1.

Such a function is called an escape function. Then, d0 is the symbol of an operator
D : D(D) → L2 such that the commutator estimate of Mourre theorem 2.6.1 is satisfied
on the interval I.

We say that d0 is an escape function since it opposite −d0 is a Lyapunov function in
the sense that

− d

dt
d0(x(t), ξ(t)) = −{h0, d0}(x(t), ξ(t)) ≤ −α.

The flow (x0, ξ0) 7→ (x(t), ξ(t)) of the Hamilton equations (2.13) is often called the
bicharactersitc. Given one initial condition (x0, ξ0), the curve t 7→ (x(t), ξ(t)) is called the
"ray" from (x0, ξ0). It is easy to follow the ray when the domain Ω is unbounded but
it could be difficult when the domain is bounded. The rays are solutions to (2.13) until
touching the boundary. By matching together rays that meet themselves at the same
point of the boundary, one can define a generalized ray as a broken curves which stay in
Ω. There are three different ways that he ray t 7→ (x(t), ξ(t)) can touch the boundary
and thus three way to extend the ray after the collision.

• (Reflexion point) The ray meet non tangentially the boundary on one point. In that
case the ray bounce off the boundary in accord with reflection law. For example, if
it is ray light, then this law is the Snell-Descartes one.

• (Diffractive point) The ray meet tangentially the boundary on one point. In that
case the ray don’t deviate. In that case the ray don’t interact with the boundary.

• (Slip point) The ray stay tangent to the boundary in the neighbourhood of this
point.

continous-linear-growth

Let H an operator of principal symbol h0 and I a bounded closed interval of R. If for
all E0 ∈ I, there exits global solution(x(t), ξ(t)) the hamiltonian dynamic, i-e the solution
of (2.13), with initial condition (x0, ξ0) such that h0(x0, ξ0) ∈ I and there exists α > 0,
tα ≥ 0 and j such that

|xj(t)| ≥ αt, or |ξj(t)| ≥ αt, ∀t ≥ tα,

then the hypothesis of Mourre theorem are satisfied with{
D = sign(xj(tα))xi if |xj(t)| ≥ αt,

D = sign(ξj(tα))i∂xj if |ξj(t)| ≥ αt,

and thus H admits essential spectrum (which must be absolutely continus spectrum) in
I (and perhaps a finite number of eigenvalue of finite multiplicity).



2.7. Appendix on Perturbative Estimates 85

Proof. The symbol associated to D is{
d0 = sign(xj(tα))xj if |xj(t)| ≥ αt,

d0 = sign(ξj(tα))ξj if |ξj(t)| ≥ αt.

Thus, the Poisson’s bracket gives

{h0, d} = ẋ(t) · ∇xd0 + ξ̇(t) · ∇ξd0 ≥ α ∀t ≥ tα.

We conclude with escape function theorem 2.6.2.

2.7 Appendix on Perturbative Estimates
sec:extraLectureEstimates

2.7.1 Anne-Laure Dalibard’s lecture: Oscillatory integrals
sec:oscillatoryEstimates

In these notes, we prove the leading order bounds on the perturbative expansion on
kinetic time scales presented in Section 2.3.2. First the naive bound will be derived,
then oscillatory techniques will be used to derive bounds which permit convergence of the
expansion on kinetic time scales t ∼ ε−2.

2.7.1.1 Review

Suppose we are in the linear setting, with the Schrödinger equation with random para-
metric forcing. Let ε � 1, ψ0 an initial state, and H = −∇ + εV where V is a random
forcing. The equation of interest is

i∂tψ = Hψ ψ|t=0 = ψ0

We assume that V =
∑

α∈Zd Vα where Vα are random, independent potentials. For all α,
E(Vα) = 0. Finally, we need a summability condition: for all p and q,∑

α∈Zd
E
(
V̂α(p)V̂α(q)

)
= |Ĝ(p)|2δ(p− q)

where G ∈ S(Rd), the Schwartz class, and supp(Ĝ) ⊂ B(0, R) for some R < 2π.
For an example of a potential satisfying these assumptions, let G ∈ S(Rd), vα random

and independent coefficients with E(vα) = 0, E(|vα|2) = 1, and let Vα = vαG(x − α).
Then V̂α(p) = vαĜ(p)eipα, and

E
(
V̂α(p)V̂α(q)

)
= E(|vα|2)Ĝα(p)Ĝα(q)ei(p−q)α

Now, using the fact that
∑

α∈Zd e
i(p−q)α = δ(p − q), we conclude that V satisfies the

required summability condition. The other conditions are easily checked.
Recall that in Section 2.3.1 we derived an iterated Duhamel expansion for ψ:

ψ(t) =
N−1∑
n=0

ψ(n)(t) + δψ(N)(t)
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where the term of order εn was given by

ψ(n)(t) = (−iε)n
∫
eis0∆V eis1∆V · · · eisn∆ψ0 δ(t−

∑
sj)ds0ds1 · · · dsn

and the remainder term was

δψ(N)(t) = (−iε)
∫ t

0

e−i(t−s)HV ψ(N−1)(s) ds

This led us to an expansion for observables: the quadratic quantities in ψ. The case that
we studied was the L2 norm:

E(‖ψ(t)‖2
2) =

∑
n

∑
π∈Sn

Val(π) + remainders

where Val collects the paired terms with permutation π:

Val(π) =
∑
|A|=n

E(ψAψπ(A))

To get this, we applied Wick’s rule to throw out non-permutation pairs. The goal of this
section is to justify this step and to investigate the size of Val(Idn). At first, we will prove
the following naive estimate:

Val(Idn) . ε2n t2n

(n!)2
.

This does not stay bounded on the kinetic time scale t ∼ ε−2. But exploiting the oscilla-
tory nature of the integrals defining ψ(n), we can sharpen the estimate. For any a ∈ (0, 1),
there is a Ca > 0 so that

Val(Idn) . ε2n (Cat)
n

(n!)a
.

When N ∼ | log ε|
| log | log ε|

, we have N ! ∼ ε−1. Then for n ≤ N , the new bound is better

than the naive bound.

2.7.1.2 Expansion and Naive Estimate

Recall that we split ψ(n) into a sum of terms representing collisions with a given sequence
A = (α1, . . . , αn) of the potentials. This decomposition took the form

ψ(n) =
∑

(α1,...,αn)

ψA, ψA(t) := (−iε)n
∫
eis0∆Vα1 · · ·Vαneisn∆ψ0 δ(t−

∑
sj)ds0 · · · dsn

With the dispersion relation for ∆, ω(p) = p2, denote ωi = p2
i . We can take a Fourier

transform in space of the integrand and get a large convolution:

F
(
eis0∆Vα1 · · ·Vαneisn∆ψ0

)
=

∫
e−is0ωV̂α1(p− p1)e−is1ω1V̂α2(p1 − p2) · · · e−isnωnψ̂0(pn)dp1 · · · dpn
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which we can use for a formula for the Fourier transform of ψA:

ψ̂A(t, p0) = (−iε)n
∫
e−i(s0ω0+···+snωn)

n∏
j=1

V̂αj(pj−1−pj)ψ̂0(pn)δ(t−
∑
sj)ds0 · · · dsndp1 · · · dpn

When we take absolute values, the exponential disappears (hence we do not use the
oscillations) and the integrals over p and s become decoupled:

|ψ̂A(t)| ≤ εn
∫ n∏

j=1

|V̂αj(pj−1 − pj)||ψ̂0(pn)|δ(t−
∑
sj)ds0 · · · dsndp1 · · · dpn

= εn
(∫

δ(t−
∑
sj)ds0 · · · dsn

)(∫ n∏
j=1

|V̂αj(pj−1 − pj)||ψ̂0(pn)|dp1 · · · dpn

)

Now the second integral does not depend on t at all, while the first does not depend on
A. The first integral represents the area of an n-simplex:

Lemma 2.7.1. For each n ≥ 1, we have∫ ∞
0

· · ·
∫ ∞

0

δ(t−
∑
sj)ds0 · · · dsn =

tn

n!

Proof. The proof is by induction. When n = 1, this is just
∫ t

0
ds0 = t.

Suppose the formula holds for n. Then for n+ 1, we have∫ ∞
0

· · ·
∫ ∞

0

δ(t−
∑
sj)ds0 · · · dsn+1

=

∫ t

0

(∫ ∞
0

· · ·
∫ ∞

0

δ((t− sn+1)−
∑nsj)ds0 · · · dsn

)
dsn+1

=

∫ t

0

(t− sn+1)n

n!
dsn+1 =

tn+1

(n+ 1)!

which proves the result.

To bound Val(Idn), square this bound and sum over |A| = n. The simplex factor does
not depend on A, and pulls to the front. By the summability condition on the V , the
remaining sum is bounded by a constant independent of t, ε, and n. This leads to

E(‖ψ(n)‖2
2) .

(
εntn

n!

)2

.

This naive bound will not suffice to show convergence of the perturbative expansion on
kinetic time scales. We did not take advantage of how the oscillatory exponential terms
interact when paired, we just crudely bounded them by 1.

2.7.1.3 Estimating paired terms

First, we review Wick’s rule, which allowed us to restrict to pairing A with permutations
of A. Then, we rewrite Val(Idn) and use an oscillatory integral trick.
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Using Plancherel, we can write observables in ψ(n) as follows:

E(‖ψ(n)(t)‖2) =
∑

|A|=|B|=n

E(ψ̂A(t)ψ̂B(t)) + remainder

where the sum is over A and B with no repetitions, and for each such A and B we find

E
(
ψ̂A(t)ψ̂B(t)

)
= ε2n

∫
ei(s

′
0ω
′
0+···+s′nω′n−s0ω0−···−snωn)E

[
n∏
j=1

V̂αj(pj−1 − pj)V̂βj(p′j−1 − p′j)

]
ψ̂0(pn)ψ̂0(p′n)δ(t−

∑
sj)δ(t−

∑
s′j)d~sd~pd~s

′d~p ′

where p0 = p′0 and ω′i = (p′i)
2.

Because there are no repetitions, the V̂αj ’s are independent from one another, as are
the V̂βj ’s. If it were also true that {α1, . . . , αn} and {β1, . . . , βn} did not contain the same
exact collections of indices, we would find an αk which does not appear among any of the
other indices, and so its potential would be independent from every other factor in the
product. Then we can pull out an E(V̂αk), which is 0 by assumption. Then the entire
quantity becomes 0. This shows Wick’s rule: the only terms that contribute are terms
with B = π(A) for some permutation π. So now

E(‖ψ(n)(t)‖2
2) =

∑
π∈Sn

( ∑
|A|=n

E
(
ψ̂A(t)ψ̂π(A)(t)

))
=
∑
π∈Sn

Val(π)

In this section, we will focus on estimating the leading order term, Val(Idn), which cor-
responds to the ladder graph Feynmann diagram. In Section 2.7.2, we will estimate the
rest of the terms, corresponding to Feynmann diagrams with crossings.

To estimate Val(Idn), begin using our expanded form for the pair of A and B above.
Also, write δ = δ(t −

∑
sj), δ′ = δ(t −

∑
s′j) for short. We get the following expression

for Val(Idn):

ε2n

∫
ei(~s

′·~ω ′−~s·~ω)
∑
αj∈Zd

E

[
n∏
j=1

V̂αj(pj−1 − pj)V̂αj(p′j−1 − p′j)

]
ψ̂0(pn)ψ̂0(p′n)δδ′d~sd~pd~s ′d~p ′

Using independence, the expectation can be pushed inside the product. Up to subsuming
a number of the repetition terms that were remainders, the sum can also be pushed inside
the product. This allows us to use the summability relation on the Vα. We find that
Val(Idn) is equal to

ε2n

∫
ei(~s

′·~ω ′−~s·~ω)

n∏
j=1

∑
αj∈Zd

E
(
V̂αj(pj−1 − pj)V̂αj(p′j−1 − p′j)

) ψ̂0(pn)ψ̂0(p′n)δδ′d~sd~pd~s ′d~p ′

= ε2n

∫
ei(~s

′·~ω ′−~s·~ω)

n∏
j=1

[
|Ĝ(pj−1 − pj)|2δ

pj−1−pj
p′j−1−p′j

]
ψ̂0(pn)ψ̂0(p′n)δδ′d~sd~pd~s ′d~p ′

But p0 = p′0, so p0 − p1 = p′0 − p′1 implies p1 = p′1, and so on. pj = p′j for all j. We find
the formula

Val(Idn) = ε2n

∫
ei(~s

′·~ω ′−~s·~ω)

n∏
j=1

[
|Ĝ(pj−1 − pj)|2

]
|ψ̂0(pn)|2δδ′d~sd~pd~s ′.
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2.7.1.4 Oscillatory integrals

To handle the oscillating terms and the deltas, the trick is to substitute the deltas for
more oscillating terms. In particular, note that for any η, because e−η·0 = 1, we have

e−η(t−
∑
sj)δ(t−

∑
sj) = δ(t−

∑
sj) =

∫
R
eiµ(t−

∑
sj)dµ

Then we can estimate the terms which involve the sj’s. We find∫
δ(t−

∑
sj)e

−i~s·~ωd~s =

∫
sj≥0

eη(t−
∑
sj)

(∫
R
eiµ(t−

∑
sj)dµ

)
e−i~s·~ωd~s

= eηt
∫
R
eiµt

∫
sj≥0

e−
∑

(η+i(µ+ωj))sjd~sdµ

= eηt
∫
R
eiµt

n∏
j=0

[∫ ∞
0

e−(η+i(µ+ωj))sds

]
dµ

= −ieηt
∫
R
eiµt

n∏
j=0

1

µ+ ωj − iη
dµ

Now, make the following definitions:

K(t, ~p) = εneηt
∫
R
eiµt

n∏
j=0

1

µ+ ωj − iη
dµ, dν(~p) =

n∏
j=1

|Ĝ(pj−1−pj)|2|ψ̂0(pn)|2dp0 · · · dpn.

Then we find that Val(Idn) is simply written as

Val(Idn) =

∫
|K(t, ~p)|2dν(~p)

Then we have a lemma, including a naive bound and a more useful bound:
Lemma 2.7.2. K(t, ~p) is bounded pointwise with the naive bound

|K(t, ~p)| . εn
tn

n!

For a ∈ (0, 1), there exists a constant Ca so that we actually find∫
|K(t, ~p)|2−adν(~p) ≤ ε(2−a)n (Cat

1−a)n

(n!)a

Proof. To prove the naive bound, just estimate

|K(t, ~p)| ≤ εneηt
∫
R

dµ

|µ− iη|n+1
≤ εn

eηt

ηn

∫
R

dµ

|µ− i|n+1

and minimizing η, we find that picking η = n/t gives

|K(t, ~p)| . εn
tnen

nn
∼ εn

tn

n!

up to a factor of
√
n by Stirling’s approximation (which is not important).

The second result comes from the same style of estimate done in the quasiresonant
forcing case. See Section 2.2.4.

Need to figure out how precisely to prove this last result, and how to push a to 0.

2.7.2 Roberta Bianchini’s lecture: Non-ladder graphs
sec:nonladderEstimates
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Chapter 3
Peter Haynes’ lecture notes

3.1 Introduction
Intro

These lecture notes correspond to a short 8 hours lecture series by Peter Haynes at
Cargèse, Corsica, in August 2021. It is intended to provide an applied view of Atmo-
spheric and Oceanic flows from the UK applied mathematics perspective of use to both
the French and UK/US schools.

The lectures focus on fundamental fluid dynamics to describe atmospheric and oceanic
flows. A difficulty that arises when studying such flows is related to the enormous spatial
and temporal range of scales they span, from the large-scales - which in the context
of the Earth’s oceans and atmosphere refers to time-scales T ∼ 1 day, length-scales of
L ∼ 1000 km in the atmosphere and L ∼ 100 km in the ocean - to the small-scales, of
the order of a few centimeters, at which dissipation and mixing occur. As a consequence,
the full physical equations are too complicated to be solved and it would be unpractical
to do so. Therefore, it is crucial to identify the leading order terms in the equations by
estimating their magnitudes and finding a simplified version of such equations.

The two main physical processes of significance for atmosphere and oceans are the
Earth’s rotation, a consequence of the Coriolis force, and stratification due to density
gradients which gives rise to a buoyancy force. Large-scale slow evolving flows, referred
to as balanced dynamics, satisfy a balance between the Coriolis and the pressure gradient
forces, called geostrophic equilibrium. By considering such balance, a subset of reduced
equations can be found, which constitutes quasi-geostrophic model. This model, initially
used in weather forecast models to filter out the fast evolving gravity waves, is too inaccu-
rate for numerical predictions [30]. Small perturbations in the fluid can cause disturbances
to the state of equilibrium, giving rise to rich variety of waves, including inertial, gravity,
and sound waves. These waves allow for transport of physical quantities (locally), may
interact with the mean flow (non-locally), and are crucial in the description of turbulence.

In section 3.2 we proceed by outlining the compressible Navier-Stokes equations de-
scribing the most complicated dynamics and by commenting on how physical effects, such
as moisture or salinity, may be accounted for. The assumptions and simplifications per-
missible on the basis of relevant non-dimensional groups are then discussed. Maintaining
a focus on waves, we choose to highlight that the vaguely hyperbolic governing equations
have five time-derivatives and numerous time-scales. Associated with these time-scales
are waves, notably, sound waves and internal gravity waves (also know as inertia gravity
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waves), which propagate information and allow for different regions of the flow to com-
municate locally.

In section 3.3 we make the assumption of weak compressibility, whereby the flow ve-
locity U and sound speed c are such that U/c� 1, and hydrostatic equilibrium in order to
derive the primitive equations a five component model with three time-derivatives which
ignores sound waves, but retains internal gravity waves. A dispersion relation for the
classes of modes captured is obtained by studying its linearisation. The geophysical im-
plications of this dispersion relation are discussed.

Having reduced the full governing equations from a system with 5 to 3 time deriva-
tives, we make further reductions to arrive at the hyperbolic shallow water or Saint-Venant
equations in section 3.4. As the title suggests, the reduction made assumes a ratio of the
horizontal to vertical length scales that is small. Linearising the shallow water equations
the potential vorticity Q, a materially conserved quantity, is introduced and the wave
modes supported are discussed. By extending the derivation to cases where boundaries
or a weak depth dependency are included variations of the potential vorticity Q and the
altered form of the wave modes present are discussed.

Section 3.5 focuses on the spontaneous generation of fast modes, i.e. inertia-gravity
waves, by the slowly evolving flow, leading to the breakdown of quasi-geostrophic balance.
After showing the non-existence of an invariant slow manifold, resulting in the inevitable
generation of gravity waves, we discuss the propagation mechanisms of such waves and
their interactions with the mean flow.

Having established that a slowly evolving balanced flow will nevertheless give rise to
waves, section 3.6 focuses on wave propagation and wave mean flow interaction. Focusing
on the 2D vorticity equation on the β-plane, the dispersion relation for Rossby waves is
derived follow by a theoretical description of their interaction with a mean flow. The
relevance of this formulation to the quasi-biennial oscillation (QBO) of equatorial zonal
winds is explored.

In section 3.7 we discuss the dynamics of a 2D flow on the β-plane. The system is
shown to undergo self-organisation with the generation of coherent structures–jets–that
are typically observed in geophysical and astrophysical flows. The jet formation mecha-
nisms are briefly discussed together with some useful mathematical models.

Finally, section 3.8 explores the role of moisture and moisture dynamics focusing on
the Madden-Julian oscillation, equatorial waves, and aggregated convection.

3.1.1 Motivating examples
MotivatingExamples

From observations of the atmosphere and ocean, we know the large range of phenomena
exist and that they do so on a large range of temporal and spatial scales. The most simple
example of waves everyone is familiar with are surface water waves. These waves arise
at the interface between two fluids, namely water and air, and the change in density of
the fluid allows for the waves to propagate at the surface. However, we will not discuss
surface waves in this context, focusing rather on waves that occur within the fluid. In
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the following we show some examples of phenomena that play an important role in the
atmosphere and ocean dynamics and will be treated later in more detail.

Example 1): Storms in the deep ocean generate waves, which propagate towards
the shore where they break and generate turbulence. An important aspect of the fluid
dynamics is the combination of these two elements: wave propagation on the one hand,
which is the way waves travel from the place where they are generated, and turbulence
on the other hand, which is a complicated nonlinear fluid motion. There are situations
where these two phenomena occur separately, with a first phase of wave generation and
propagation, and a second phase in which the flow breaks down into turbulence. In other
cases, turbulence and waves co-exist and cannot be separated.

Figure 3.1: Acoustical snapshot of a nonlinear internal gravity wave approaching the
Oregon coast. The wave propagates from left to right at speed Cw in this image. Caption
and sources copied from [44]

fig:KelvinHelm_ocean

An example of internal waves breaking into turbulence is visible in figure 3.1, which
is an acoustic snapshot captured in the ocean near the Oregon coast [44]. The waves on
the left side show rolls up features typically caused by Kelvin-Helmholtz (KH) instability.
The KH is a instability of a shear flow, modified by the presence of density stratification.
Moving towards the right side, the waves break down into turbulence, characterised by
less coherent structures with smaller size. The development of turbulence caused by KH
instability is important in explaining the ocean mixing.

Example 2): In the atmosphere, it is possible to see without the need of any instrument
the development of the KH instability, when the billows shape the clouds as in the cases
shown in figure 3.2. The pattern shows waves similar to the surface waves near to a beach.

Example 3): The KH instability has been studied in the Thorpe tilted tank experiment
(originally done in Cambridge in 1971 [48]). The experiment consists of a long horizontal
tank filled in with density stratified fluid: a denser layer is in the bottom half, while a
lighter fluid is on top of it. When the tank is tilted, the lighter fluid flows towards the
lower side of the tank, generating a velocity shear at the interface. Consequently, the
Kelvin Helmholtz instability arises at the interface, with billows very similar to the ones
observed in the atmosphere (see figure 3.3) [44].
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Figure 3.2: Evolution of the Kelvin-Helmholtz instability revealed by clouds. (a) (from
http://www-frd.fsl.noaa.gov/mab/scatcat; photo by Brooks Martner), (b) a fog layer on
the shore of Nares Strait in the Canadian Arctic (courtesy of Scott McAuliffe, Oregon
State University), (c) Ground view of billow clouds (http://www.weathervortex.com/sky-
ribbons.htm Caption and sources copied from [44].

fig:KelvinHelm_Exp

Figure 3.3: Thorpe’s titling tank experiment in which a denser fluid (here shown in dark)
underlies a lighter fluid. Sources copied from [48].

fig:ThorpeTank_Exp

For many years, laboratory experiments have been the only mean to study these kind
of instabilities as they were beyond the computational power of numerical simulations.

However, in most recent years, simulations have improved thanks to the gain in compu-
tational power so that they are now capable of effectively simulating the three dimensional
nature of the KH instability, including the small-scale breakdown into turbulence. An ex-
ample showing the life cycle of the fully three-dimensional Kelvin-Helmholtz instability is
shown in figure 3.4. The advantage of performing numerical simulations is that they offer
access to the full variables in the entire domain, contrary to the laboratory experiment
where only some quantities are usually measurable.

Example 4): Another recognisable phenomenon that occurs in the atmosphere is a
large thunderstorm convective cloud developing in the tropics. This particular cloud,
which is one of the largest persistent thunderstorm extending for almost 20 km in height,
is also known as Hector the convector. The name was given by the Australian pilots
that, during the second world war, used Hector as a landmark. It forms because of the
particular local geometry: two islands just north of Darwin on the Australian coast pro-
vide boundaries for the sea breeze setting up a convective system in which moisture rises.
This system is of particular interest for studying how chemicals and water vapour are
transported from the lower part of the atmosphere to the troposphere and even higher in
the stratosphere. Numerical simulations by [14] could capture simultaneously the large
scales and small-scale dynamics of the cloud, reaching a resolution of 100 m.
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Figure 3.4: Direct numerical simulations of the density field at successive time in the life
cycle of a Kelvin-Helmholtz billow train. colors show density in the transition layer; upper
and lower homogeneous layers are rendered transparent. (a) The initial state is a two-layer
flow, with a lower (dense) layer flowing to the left and an upper layer to the right. a small
perturbation is applied. (b) two wavelengths of the primary Kelvin-Helmholtz instability.
(c) Kelvin-Helmholtz billows are beginning to pair. Secondary instability is visible in a
cutaway at upper right, taking the form of shear-aligned convection rolls. (d) Secondary
shear instability forms on the braids. (e) The fully turbulent state. (f) turbulence decays
to form sharp layers and random small-scale waves. Sources copied from [44]

fig:Thorpe_sim

Figure 3.5: Hector the convector reaching stratospheric heights. Sources copied from [14].
fig:HectorConvector_Numerics

Example 6): So far, we have focused on phenomena at the human scales, but with the
help of satellite observations we can easily look at even larger scales. For example, figure
?? shows the time-longitude cloudiness in the tropics above Indonesia. Several structures
are visible in the plot: waves propagating towards the east, longitudinal heterogeneity
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corresponding to over-land regions, variability on the large-scale patterns with a period
of around 40 days. The latter is know as the Madden Julian Oscillation, which is a
fluctuation associated with variation of convection over the Indian ocean.

Satellite observations have opened new possibilities to investigate space-time structures
in the atmosphere and in the ocean that were not possible to observe before.

Figure 3.6: Time-longitude showing the cloudiness in the tropics Sources copied from [28]
fig:clouds

Questions stemming from all these examples cannot be considered on the human scale
and instead require that we consider the large scale/long time dynamics. How the inter-
action between scales manifests must then be addressed. We proceed in the next section
by outlining the governing equations which must allow for all these phenomena, and sub-
sequently by making physically motivated assumptions study particular phenomenon in
subsequent sections.

3.2 Mathematical formulation
MathForm

We use x = (x, y, z) to define the longitude, latitude and depth of a fluid layer such as the
ocean or atmosphere. Time is denoted by t and the variables u(x, t), ρ(x, t) and p(x, t)
denote the velocity vector, density and pressure. θ(x, t) denotes an entropy like field
akin to potential temperature in the context of gaseous fluids, relevant in atmospheric
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science. In a rotating frame of reference with constant rotation vector Ω their evolution
is described by

Du

Dt
+ 2Ω× u = −∇p

ρ
+ g, (3.1a)

∂ρ

∂t
+∇ · (ρu) = 0, (3.1b)

∂θ

∂t
+∇ · (θu) = Q(ρ, θ), (3.1c)

where g denotes the gravity field, Q(ρ, θ) a diabatic heating term and centrifugal termsFullNS

are absorbed into the pressure field p. For model closure (3.1) must accompanied by an
appropriate equation of state e.g. p(ρ, θ). The material derivative, which describes the
advection of a fluid parcel is given by

D

Dt
=

∂

∂t
+ (u · ∇). (3.2)

In stating (3.1) we have neglected viscous effects given that typical geophysical flows
have a ratio of |u·∇u||ν∆u| ∼

UL
ν
� 1, where ν is the kinematic viscosity and U,L appropriately

chosen velocity and length-scales.
Depending on the physical problem of interest additional complexity may be added

to (3.1). The motivation for doing so being that the general equations must allow for all
the phenomena reported in subsection 3.1.1. If for example the ocean’s dynamics where
know to depend strongly on a salinty field χ(x, t), as is the case in the Mediterranean sea
[54], we could require that

Dχ

Dt
= 0, (3.3)

in conjunction with an appropriate modification of the equation of state’s functional de-
pendence p(ρ, θ, χ). Another scenario of relevance in atmospheric dynamics is the presence
of a moisture field, often evoked to explain phenomenon including the biennial Madden
Julian oscillation [26,56]. In such a scenario a moisture field S(x, t) would be required to
satisfy

DS

Dt
= 0, (3.4)

along with an appropriate modification of the adiabatic heating term Q(ρ, θ, q). The role
of moisture, and how it alters the dynamics described by (3.1) will be revisited in more
detail in section 3.8.

The approach taken in the following sections is to study particular phenomena by
considering physically motivated simplifications of (3.1). More specifically the approach
taken will be to consider the linearised behavior of a reduced set of equations about some
base state of relevance. This approach allows us to obtain a dispersion relation, from
which one can infer the behaviour of various wave modes admitted by the equations. A
crucial distinction that will be made when following this approach, is that certain as-
sumptions/reductions reduce the number of time-derivatives present in (3.1). This has
the effect of reducing the class wave modes present and thereby altering the means by
which transport occurs, i.e. incompressibility ∇ · u = 0 excludes sound waves, causing
the system to communicate non-locally via the pressure field.
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3.3 Primitive equations
PreShallowWater

Given the prominence of rotation and stratification in geophysical flows, we now neglect
entropy effects to consider the case of a rotating, stably stratified flow in hydrostatic
equilibrium. This serves as a starting point from which we obtain significant dispersion
relations that in later sections can be further simplified.

3.3.1 Assumption 1 - The Boussinesq approximation

We assume an incompressible ∇ · u = 0 Boussinesq fluid, excluding sound waves on the
basis that U/c� 1 and large variations in pressure or density by restriction to sufficiently
shallow fluid layers. We expanded the density field as ρ(x, t) = ρ0 + ρ′(x, t) about a
constant ρ0 with ρ′/ρ0 � 1 and correspondingly the pressure may be split as p(x, t) =
p0(z) + p′(x, t). Substituting and assuming the hydrostatic balance dp0(z)/dz + ρ0g = 0,
we get at leading order in the vertical momentum balance 1 that

(ρ0 + ρ′)
Dw

Dt
= −∂p0

∂z
− ∂p′

∂z
− (ρ0 + ρ′)g,

Dw

Dt
u − 1

ρ0

∂p′

∂z
− ρ′

ρ0

g,

by retaining density variations occur at leading order only when multiplied by gravity.
In the horizontal components of the Navier-Stokes we replace 1/ρ by 1/ρ0. Taken into
account the full equations may be written as

Du

Dt
+ f × u = − 1

ρ0

∇p′ + ρ′

ρ0

g, (3.5a)

∇ · u = 0, (3.5b)
Dρ′

Dt
= 0, (3.5c)

where f = 2Ω. The Boussinesq assumption therefore takes into account the effect ofeq:PreBqNS

density variations so as to include buoyancy forces. Mathematically this reduction has
reduced the set of wave modes described by the equations and introduced non-locality
through the pressure field. The implications of this assumption are that where sound
waves once propagated information with a limited speed in the hyperbolic system 3.1, p′
is now instantaneously determined from u as a solution of the Poisson equation. This has
the effect of propagating some information instantaneously in the mixed elliptic-hyperbolic
system 3.5. In effect, (3.5) excludes sound waves but retains their implications.

3.3.2 Assumption 2 - Stratified fluid layer

Due to the presence of stratification it is further informative to consider the the density
field ρ′(x, t) = ρs(z) + ρ̃(x, t), decomposed in terms of a background density ρs(z) and a
disturbance density ρ̃(x, t) usually zero when there is no fluid motion. By doing so, it is
possible to quantify the stability of the background state in terms of the Brunt-Vaisala
frequency

1the vertical component of the Coriolis force is a higher order effect and is thus neglected here
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N2 = − g

ρ0

dρs(z)

dz
, (3.6)

a quantity that is useful when interpreting the stratification strength. For N2 > 0 the
density decreases upwards such that a vertically displaced parcel of fluid will return to
its original position. Here N refers to the frequency at which this parcel of fluid will
oscillation, when returning or deviating from this equilibrium state.

3.3.3 Assumption 3 - Shallow fluid layer

To motivate the final assumptions used to arrive at the primitive equations, we first con-
sider the dispersion relation of small amplitude waves for a typical model problem. Taking
N to be the buoyancy frequency, describing the stability of a background stratification
ρs(z) and f = f ẑ a purely vertical and constant rotation vector, we obtain

ω2 =
N2k2 + f 2m2

k2 +m2
, (3.7)

where k ∼ 1/L and m ∼ 1/D are the horizontal and vertical wavenumbers respectively.
It follows on dimensional grounds that the relative strength of stratification to rotation
is given by N/L versus f/D. Given that N � f in the atmosphere and ocean, where
f ∼ O(10−4) and N ∼ O(10−2 − 10−3) [23, 50], we can deduce that rotation is only
of significance in shallow fluid layers when D � L. However, in such shallow layers
vertical velocities will be much smaller than horizontal velocities and for this reason only
the Coriolis force associated with horizontal velocities, its vertical component, need be
included.

Writing the velocity and rotation vector in terms of their horizontal and vertical com-
ponents u = uh+uv, f = fh+fv and taking their cross product (accounting for fv×uv = 0)
we obtain

f × u = fh × uh + fh × uv + fv × uh u fv × uh. (3.8)

This assumes |uv| � |uh| so that fh × uv u 0 and that fh × uh is of higher order in
the vertical component of the moment equation so that it may also be neglected. Thus
we replace the rotation vector by is vertical component |fv| = 2Ω sinϕ, where ϕ denotes
the latitude. When considering the region near the equator the first assumption may fail
to be valid as |fv| � |fh|. Similarly the second assumption may become invalid if D � 1
such that the hydrostaic approximation ceases to apply.

Collectively these assumptions allow us to write down the so called primitive equations

Du

Dt
+ fvv =

∂p′

∂x
, (3.9a)

Dv

Dt
+ fvu = − 1

ρ0

∂p′

∂y
, (3.9b)

∂p′

∂z
= −ρ′g, (3.9c)

∇ · u = 0, (3.9d)
Dρ′

Dt
= 0, (3.9e)
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which are valid in a thin incompressible fluid layer for which the hydrostatic approxi-PrimitiveEqns

mation is valid. If the pressure or density were to experience large variations over large
vertical length scales, as is the case for cumulus clouds, (3.9) would cease to describe the
dynamics. For further details on the reduction to the primitive equations see textbooks
[23,50].

A final approximation of use, is to restrict our attention to a local region of the sphere
that can be described in terms of Cartesian co-ordinates. This is achieved by Taylor
expanding the vertical rotation vector about a fixed latitude ϕ0,

fv(ϕ) u f + βy u 2Ω sin(ϕ0) +
2Ω

a
cos(ϕ0)a(ϕ− ϕ0), (3.10) eq:beta_plane_approx

where Ω is the angular rotation rate and a the radius, in order to replace fv u f + βy
by its local variation correct to first order. This important simplification, termed the β-
plane approximation, captures important features including Rossby waves whilst making
the equations more tractable.

The primitive equations have 5 prognostic variables, three time derivatives and two
instantaneous constraints which include the implication of sound waves non-locally. As
such the primitive equations behave like a stack of shallow water equations, which com-
municate in the vertical through the pressure field.

3.3.4 Dispersion relation for internal gravity waves or inertia-
gravity waves

sec:dispertionIGW

In order to understand what type of behaviour we get from (3.9) we consider a background
state in hydrostatic equilibrium:

u = 0,

ρ′ = ρs(z),

− ∂p

∂z
− gρs(z) = 0.

Now we consider small disturbances about the background state (here denoted by
tilde) and apply a linearisation. The equations become:

∂ũ

∂t
+ f × ũ = −∇p̃

ρ0

+
ρ̃

ρ0

g,

∇ · ũ = 0,

∂ρ̃

∂t
+ w̃

dρs
dz

= 0.

We assume plane waves, that all fields ∝ exp(i(k · x − ωt)), with the wavevector k =
(k, l,m). For brevity, we replace ũ by ũei(k·x−ωt) and so on. We write the equations in
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components:

−iωũ− fṽ = −ikp̃
ρ0

, (3.11a) A

−iωṽ + fũ = −i lp̃
ρ0

, (3.11b) B

−iωw̃ = −imp̃
ρ0

+ σ̃, (3.11c) C

−iωσ̃ + w̃N2 = 0, (3.11d) D

kũ+ lṽ +mw̃ = 0, (3.11e) E

where we have replaced ρ̃ by σ̃ =
−ρ̃g
ρ0

. Now starting the algebra we combine (3.11a) &

(3.11b)

iω × (3.11a)− f(3.11b) : (ω2 − f 2)ũ = (kω + ilf)
p̃

ρ0

,

iω × (3.11b) + f(3.11a) : (ω2 − f 2)ṽ = (lω + ikf)
p̃

ρ0

,

and use (3.11e) to eliminate ũ, ṽ

w̃ = − k
m
ũ− l

m
ṽ (3.12a)

= −
(
k

m
(kω + ilf) +

l

m
(lω − ikf)

)
× p̃

ρ0(ω2 − f 2)
(3.12b)

=
−(k2 + l2)ω

ρ0(ω2 − f 2)m
p̃. (3.12c)

Substituting the previous expression for p̃ in (3.11c)

− iωw̃ =
im2w̃(ω2 − f 2)

(k2 + l2)w
+ σ̃, (3.13)

w̃ =
ω(k2 + l2)σ̃

−i(ω2(k2 + l2 +m2)− f 2m2)
, (3.14)

and eliminating w̃ using (3.11d) we obtain the dispersion relation for internal gravity
waves

ω2 =
N2(k2 + l2) + f 2m2

(k2 + l2) +m2
, (3.15) eq:IGW_dispersion_Rel

where k, l ∼ 1/L and m ∼ 1/D are the horizontal and vertical wavenumbers respectively.
Some important limits of this relation are when

(k2 + l2)� 1� m2, N2 dominates (3.16)

and we obtain gravity waves, while for
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m2 � 1� (k2 + l2), f 2 dominates (3.17)

resulting in inertial waves. Another limit (or root) of this dispersion relation is ω2 = 0.
This connects back to the fact that the primitive equations have three time derivatives
and thus support three different wave modes, one of which is the zero mode. Given that
m ∼ 1/D and we require D � L for the hydro-static assumption to apply, we cannot
approach m → 0, D → ∞ as our assumptions would break down. For this reason m can
not be taken to be too small. A final remark is that the wave frequency must lie between
N2 and f 2, such that they control its upper and lower limits.

To illustrate the difference between group and phase propagation of these waves it is
informative to consider a laboratory experiment of stably stratified fluid in which rotation
is excluded. Figure 3.7 shows a tank of stably stratified salt water, perturbed at its center
by a metal rod suspended on a fishing line. When set in motion the rod creates density
fronts, which take the form of beams. In this case the group propagation is along these
beams while the phase propagation occurs perpendicular to these beams.

Figure 3.7: An oscillating rod in a tank of stably stratified slated water causes waves
to enimate at an angle prescribed by the oscillation frequency. While for oscillation
frequencies less that the Brunt-Vaisala frequency N2 no waves occur. Animation available
at GFD-online courtesy of (Satoshi Sakai, Isawo Iizawa, Eiji Aramaki)

fig:SatoshiSakaiGravityWave

To emphasise the notion of group propagation as information propagation, it is in-
formative to consider observations of atmospheric equatorial Kelvin waves as shown in
3.8. In this example, we observe the downward phase propagation of equatorial Kelvin
waves from the stratosphere, accompanied by the upward group propagation, a forcing
responsible for sustaining these cloud formations? [1].

In the derivation of the dispersion relation and in the discussion of its implications,
we have thus far ignored the influence of boundaries. When included boundaries given
rise to an interesting set of hybrid wave modes termed kelvin waves. An example of these
waves and the pronounced effect rotation has on their dynamics is available at GFD-online
courtesy of (Satoshi Sakai, Isawo Iizawa, Eiji Aramaki). In the context of the primitive
equations (3.9) the fact that the rotation vector f(ϕ) varies as a function of latitude

http://dennou-k.gfd-dennou.org/library/gfd_exp
http://dennou-k.gfd-dennou.org/library/gfd_exp


3.4. Shallow water equations 103

Figure 3.8: Atmospheric equatorial Kelvin waves seen in radiosonde temperature profiles
of troposphere cirrus clouds [1].

fig:AtmosphereKW

gives rise to an artificial boundary. This results in a special set of modes termed trapped
equatorial Kelvin waves which will be discussed in subsection 3.4.3.

3.4 Shallow water equations
sec:ShallowWater

Let us consider a thin layer of homogeneous fluid between a rigid bottom and a free
surface, as sketched in figure 3.9 where H = constant is the depth of the fluid at rest,
η � H is the disturbance, and therefore H + η is the free surface elevation. The two
horizontal velocity component (u, v) do not depend on depth. In this way we can describe
the system with the so-called shallow water equations

Du

Dt
+ f × u = g∇η, (3.18a) eq:SWmom

∂η

∂t
+∇ · (u(η +H)) = 0, (3.18b) eq:SWdensity

where the two-dimensional material derivative reduces toeq:SW

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

and f is purely vertical and constant. Note that the fluid height is directly related to the
pressure. We have three time derivatives and the system does not account for any vertical
variation. In that sense the shallow water equations can be thought of as describing the
evolution of the primitive equations (3.9) in a linear regime, for a particular mode, with
a fixed vertical structure. An instance where this approach is valuable, is describing the
El Nino climate pattern, whereby the first baroclinic mode is an equatorial kelvin mode
[50].

These equations are simpler than the full three-dimensional equations (we have reduced
the system from 5 to 3 variables), but at the same time they provide a reasonable model
for the dynamics of the atmosphere and the oceans [50]. We can reconstruct the system
seen in the previous chapter by considering a stack of shallow water layers on top of each
other interacting via the hydrostatic equation.
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y

x

z

H + η

Figure 3.9: Shallow water system
fig:sw

3.4.1 Poincaré waves

The shallow water system of equations admits gravity waves traveling with speed
√
gH.

Provided a suitable value for H, shallow water gravity waves share some properties we
have already seen for the gravity waves encountered in the 3D continuously stratified
system. By linearising (3.18) about a state of rest of the system, we can write the system
by components:

∂u

∂t
− fv = −g ∂η

∂x
(3.19a) eq:SWlinearX

∂v

∂t
+ fu = −g∂η

∂y
(3.19b) eq:SWlinearY

∂η

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0. (3.19c) eq:SWlinearE

By taking the divergence of (3.19a) and (3.19b), we obtain:eq:SWlinear

∂

∂t

(
∂u

∂x
+
∂v

∂y

)
− f

(
∂v

∂x
− ∂u

∂y

)
= −g

(
∂2η

∂x2
+
∂2η

∂y2

)
(3.20) eq:divSW

We then take the time derivative of (3.19c) and substitute (3.20) to obtain

∂2η

∂t2
− gH

(
∂2η

∂x2
+
∂2η

∂y2

)
= −fH

(
∂v

∂x
− ∂u

∂y

)
, (3.21) eq:Ett

where
ζ =

(
∂v

∂x
− ∂u

∂y

)
(3.22) eq:vvort

is the vertical vorticity component.
To illustrate that vorticity can be added by stretching and is related to the free surface

height. We can also consider the vorticity equation:

∂ζ

∂t
= −f

(
∂u

∂x
+
∂v

∂y

)
=

f

H

∂η

∂t
,
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obtained by taking the curl of (3.19a) and (3.19b). This is useful to illustrate that

∂

∂t

(
ζ − fη

H

)
=

∂

∂t

(∂v
∂x
− ∂u

∂y
− fη

H

)
= 0,

such that the potential vorticity

Q(x, y) =
∂v

∂x
− ∂u

∂y
− fη

H
(3.23) eq:PotentialVorticityy

is a quantity conserved in time and it is set by the initial conditions. That it is absolute
vorticity rather than relative vorticity that’s conversed, comes as a consequence of the
rotating frame of reference.

Substituting for (3.23) in the right hand side of (3.21), we obtain a closed system for
the free surface disturbance:

∂η2

∂t2
− gH

(
∂2η

∂x2
+
∂2η

∂y2

)
+ f 2η = −fHQ(x, y). (3.24) eq:eta

k

ω

Figure 3.10: Sketch of the inertia-
gravity wave dispersion relation

fig:poincare

The linearised shallow water system is described
by (3.24). Similarly to what done in section 3.3.4,
we can derive the dispersion relation by considering
solutions of the form η(x, y, t) = Re(η̃ exp(ik · x −
iωt)), for simplicity we consider the one-dimensional
case. The dispersion relation for shallow-water grav-
ity waves, also called Poincaré waves, is

ω2 = c2k2 + f 2, (3.25) eq:poincare

where the phase speed is c =
√
gH. Note that if we

replace the phase speed with c = N/m, we have the
same dispersion relation previously found for hydro-
static gravity waves (3.15). This correspondence as-
sumes a fixed vertical wave number m ∼ 1/H � k,
as appropriate for a shallow layer of large horizontal
extent.

The dispersion relation of inertia-gravity waves is sketched in blue in figure 3.10. The
dashed lines show the limit for the non rotating case, where the dispersion relation reduces
to ω = ±ck.

Additionally to the two wave modes ω±, there is a third solution to (3.24), which is the
zero frequency mode ω = 0, corresponding to the time-independent flow in geostrophic
balance.

3.4.2 Initial value problem (‘Rossby adjustment’)
sec:RossbyAdjustment

If the initial flow is in an imbalanced state, when it is left free to evolve it will reach a
state of equilibrium by propagating gravity waves. Given the initial distribution of u, v,
and η, one can determine Q(x, y). The waves are generated by the initial condition and
will then propagate into the fluid.



106 Chapter 3. Peter Haynes’ lecture notes

For flows where the Rossby number Ro = U/fL is small and therefore the Coriolis
term is much larger than the advection term, the shallow water equations can be reduced
to

−fv = −g ∂η
∂x
, (3.26a)

fu = −g∂η
∂y
, (3.26b)

which is known as geostrophic balance. Synoptic and larger scale motions in the mid-
latitudes are in approximate geostrophic balance. It follows that the steady state is

− gH
(
∂2η

∂x2
+
∂2η

∂y2

)
+ f 2η = −fHQ(x, y), (3.27a)

u = − 1

f
g
∂η

∂y
, (3.27b)

v =
1

f
g
∂η

∂x
. (3.27c)

We can consider the simple case of an unbounded system. The initial conditions are

η = η0 sgn(x),

u = 0,

v = 0.

A sketch of the evolving state is shown in figure 3.11,

x = 0

Q = fη0
H

Q = −fη0
H

c c

Figure 3.11: evolution of the initial state and radiation of gravity waves away from the
disturbance.

fig:IC

The initial state of this flow (which follows from (3.23)) is unbalanced, as we have a
discontinuity in the fluid height. Q(x, y) is set by the initial η and has the values indicated
in the sketch in the two regions. Note that η also sets the vertical wavelength, After the
fluid is let evolve for some time, it will adjust to a stable state by propagating waves in
opposite directions, and the discontinuity is smoothed by such propagation.

The final state, reached by the system after the waves propagate away from the source,
is

η = η0 sgn(x) exp(|x|/LR)− η0sgn(x),

u = 0,

v =
g

fLR
η0 exp(|x|/LR),
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where the Rossby deformation radius LR representing the length scale at which gravity
wave propagation and rotation balance is given by

LR =

√
gH

f
= c/f. (3.30)

Alternatively this parameter can be understood as the length scale for which rotation
becomes important. In general the Rossby deformation radius is dependent on the vertical
structure as c and f are implicitly determined by H. Further details of this problem and
the Rossby deformation radius are given in chapter 3 of [50] and chapter 7 of [23].

3.4.3 Kelvin waves - horizontal boundaries
sec:KelvinWaves

Let us now consider gravity waves in a domain with a rigid lateral boundary at y = 0
(similar to the case of the ocean near the coastline). This boundary imposes then no-
penetration condition v = 0 for y = 0.

By setting v = 0 everywhere, we can look for wave-like solutions of the linearised
shallow water equations (3.19) that satisfy this zero velocity condition

∂u

∂t
= −g ∂η

∂x
(3.31a) eq:KelvinXV0

fu = −g∂η
∂y

(3.31b) eq:KelvinYV0

∂η

∂t
+H

∂u

∂x
= 0. (3.31c) eq:Kelvin

which lead to the wave equation

∂2η

∂t2
− gH ∂2η

∂x2
= 0.

The solutions for the surface elevation will be of the form η = A(x−ct, y)+B(x+ct, y).
There is a flow in x direction in geostrophic balance with the surface elevation along y
and it follows from (3.31a) that the solution for the velocity can be written as u =
g/cA(x− ct, y)− g/cB(x+ ct, y). We can substitute the two solutions in (3.31b) and find
the values of A and B

fg

c
(A(x− ct, y)−B(x+ ct, y)) = −g

(
∂A

∂y
(x− ct, y) +

∂B

∂y
(x+ ct, y)

)
.

It follows that
∂A

∂y
= −f

c
A,

∂B

∂y
=
f

c
B,

with solutions
A = exp

−fy
c
, B = exp

fy

c
,

For y > 0, the solution for B grows exponentially and therefore we reject it, which
leave us with the solutions

η = A(x− ct, y), u =
g

c
A(x− ct, y). (3.32a)
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Waves propagating along the wall and according to the sign of f they travel eastward or
westward.

An example of these waves and the pronounced effect rotation has on their dynamics
is available at GFD-online courtesy of (Satoshi Sakai, Isawo Iizawa, Eiji Aramaki). In this
experiment a square tank is equipped with a dipper that generates waves. In the absence
of rotation, the waves emanate outwards from the source, but when included the rota-
tion introduces a very strong asymmetry and waves propagate along the boundary. The
resonant tide phenomena observed in the 1950’s in both Holland and the UK constitutes
another example of Kelvin waves. In this particular circumstance a high tide coincided
with waves from the mid north sea/Atlantic resulting in substantial flooding of both low-
lying coastlines. The presence of Kelvin waves is also used to explain the higher tides
experienced by the French coast of the English channel. In the context of the primitive
equations (3.9) the fact that the rotation vector f(ϕ) varies as a function of latitude gives
rise to an artificial boundary for ϕ u 0. This results in a special set of modes termed
trapped equatorial Kelvin waves, whose topological invariance has been argued by [15].

3.4.4 Slow modes - non-flat lower/vertical boundary
sec:SlowModesTopoGraph

The study of the shallow water equations in the lectures thus far have focused on inertia
gravity waves, induced by the combined effects of gravity and rotation and Kelvin waves
which balance the influence of the Coriolis force and horizontal topographic boundaries.
In this section, we demonstrate how incorporating a non-flat boundary with a weak lati-
tudinal depth dependence gives rise to a special slow mode termed a topographic Rossby
wave, whose vorticity is materially conserved rather than being simply invariant in time.
In the context of the derived dispersion relation 3.3.4, this slow mode corresponds to the
modification of the geostrophically balanced flow due to a non constant thickness.

Although Rossby waves are typically considered using the β-plane approximation,
which includes a latitudinal dependency of the Coriolis force, such waves can also arise due
to the presence of a spatially varying lower boundary, such as mountains for atmospheric
flows and the sea-bed for oceanic flows.

To demonstrate the material conservation of vorticty we turn now our attention to the
full shallow water equations again

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g ∂η

∂x
(3.33a) eq:R1

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g∂η

∂y
(3.33b) eq:R2

∂η

∂t
+∇ · (u(H + η)) = 0 (3.33c) eq:R3

where we have re-introduced the non-linear terms. By subtracting ∂/∂x of (3.33b) from
∂/∂y of (3.33a) and using the definition of vertical vorticity (3.22) we get:

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ f

(
∂u

∂x
+
∂v

∂y

)
+ ζ

(
∂u

∂x
+
∂v

∂y

)
= 0 (3.34)

By re-arranging (3.33c)

D(η +H)

Dt
+

(
∂u

∂x
+
∂v

∂y

)
(H + η) = 0, (3.35)

http://dennou-k.gfd-dennou.org/library/gfd_exp
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and eliminating the divergence in both expressions we can combine the two into

1

(ζ + f)

D(ζ + f)

Dt
=

1

(H + η)

D(H + η)

Dt
, (3.36)

which can be written as

DQ(x, t)

Dt
= 0, where Q(x, t) =

ζ + f

H + η
, (3.37) eq:NLPotentialVorticityy

in terms of absolute vorticity, combining vorticity induced by rotation with that induced
by the thickness of the fluid layer. Contrasting (3.23) with (3.37) we see that the latter
also depends on the velocity field, rather than exclusively its rate of change. This implies
that for (3.37) fluid parcels remember their initial condition while for (3.23) it is merely
the general fluid motion. The nonlinearity in (3.37) also captures a richer behaviour
provided Q(x, t) has spatial gradients. While for the linearised case the flow is completely
determined by Q(x, y).

To derive the dispersion relation for the slow mode with non-zero frequency, we con-
sider a basic state of a fluid at rest ζ = 0, η = 0 in a domain whose depth depends on
the latitude y such that the vorticity is Q = f/H(y). In contrast to previous sections,
the linearised shallow water equations will now gain an advective term. We now define
Φ = gη and write the linearised set of equation as

∂u

∂t
− fv = −∂Φ

∂x
, (3.38a) eq:add-a

∂v

∂t
+ fu = −∂Φ

∂y
, (3.38b) eq:add-b

∂Φ

∂t
+ g

∂(uH)

∂x
+ g

∂(vH)

∂y
= 0, (3.38c) eq:add-c

where the conservation of mass has been multiplied by g and H(y) does not depend on
x. As already done several times before, we can subtract the y derivative of (3.38a) from
the x derivative of (3.38b)

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
+ f

(
∂u

∂x
+
∂v

∂y

)
= 0, (3.39)

combine it with the third equation

∂

∂t

(
∂v

∂x
− ∂u

∂y

)
− f

gH

(
∂Φ

∂t
+ g

∂H

∂y
v

)
= 0, (3.40)

and re-arrange the time derivatives on the left-hand side to get

∂

∂t

(
∂v

∂x
− ∂u

∂y
− fΦ

gH

)
=

f

H

∂H

∂y
v. (3.41)

By taking the time derivative of (3.38b) and substituting for ∂u/∂t from (3.38a), we
obtain

∂2v

∂t2
= − ∂

2Φ

∂y∂t
− f 2v + f

∂Φ

∂x
. (3.42) eq:add-2
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Now we take the time derivative of (3.42) and substitute (3.38c) to get

∂3v

∂t3
+ f 2∂v

∂t
= gH

∂

∂y

∂

∂t

(
∂u

∂x
+
∂v

∂y

)
+

∂

∂y

∂

∂t

(
g
∂H

∂y
v

)
+ f

∂

∂x

∂Φ

∂t
, (3.43)

which can be re-written as

∂3v

∂t3
+ f 2∂v

∂t
− g ∂

2

∂y2

∂(Hv)

∂t
=

∂

∂x

∂

∂t

(
gH

∂u

∂y
+ fΦ

)
, (3.44)

and then into

∂3v

∂t3
+ f 2∂v

∂t
− g ∂

2

∂y2

∂(Hv)

∂t
= gH

∂2

∂x2

∂v

∂t
− g∂H

∂y
f
∂v

∂x
, (3.45)

and finally
∂

∂t

(
∂2v

∂t2
+ f 2v − g∂

2(Hv)

∂y2
− gH ∂2v

∂x2

)
= −g∂H

∂y
f
∂v

∂x
. (3.46) eq:TopogRossbyWave

To simply the analysis we consider the case of a weakly sloped lower boundary H(y) =
H0 + εγy, with εLγ/H0 << 1, where L is the width of the domain in the y direction
assumed to be large compared with the vertical depth. As we shall demonstrate this
yields an additional slow O(ε) mode in the dispersion relation, corresponding to a branch
of topographic Rossby waves.

As previous we look for plane wave solutions to (3.46) of the form v(x, y, t) ∝ v(y) exp(ikx+
iωt). After substitution we obtain at leading order in ε that

∂2v

∂y2
=

(
k2 +

f 2 − ω2

gH0

)
v +O(ε), (3.47a)

= −l2v +O(ε), (3.47b)

subject to the assumption that ω � ε,given that other order one terms would be present
should this not hold. The values of l2 are determined by the quantization condition

ω2 = gH0(k2 + l2) + f 2, (3.48)

a two-branches dispersion relation (as per the standard case see (3.25)) along with the
small frequency or slow solution ω u O(ε). In this case, terms of O(ε) and terms ∝ ω
on the left hand side remain become O(ε2) such that only the left hand side is retained.
Substituting the plane wave Ansatz we have

∂2v

∂y2
=
(
k2 +

f 2

gHo

+
γfk

H0

1

Ω

)
v +O(ε2), where Ω = (ω/ε). (3.49)

Gathering the terms as previous l is determined by the quantization condition

Ω = − γfk

H0(k2 + l2 + f 2/(gH0))
. (3.50) eq:DispersionRelTopogRossbyWave
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k

ω

Figure 3.12: Sketch of the inertia-
gravity wave and topographic
Rossby waves dispersion relation.

fig:Rossby

A sketch of the modified dispersion relation per-
taining to the case of H ′(y) ∼ O(ε), is shown figure
3.12. Introducing a latitudinal dependency to the
depth causes the zero-frequency mode, which was
a flat curve in the case of flat bottom, to become
small but non-zero. Note that the Rossby waves
are not symmetric with respect to the wavenum-
ber and only exist in the negative side. This means
that they only propagate in one direction eastward
in the northern hemisphere and westward in the
southern hemisphere. There is a separation of the
linear scales if the bottom surface deformation is
small.
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3.4.5 Derivation of equations for slow motion

In the previous sections we have seen that having rotation, stratification and a non-
constant lower boundary gives rise to: A) Two fast modes, typically inertia-gravity waves,
with frequencies ±ω ≥ ±f . By propagating information away from disturbed regions,
these waves induce a Rossby adjustment 3.4.2 leading to a near geostrophic balance. B)
One slow mode with ω � f constituting a slow modification of the geostrophic balance,
typically through the propagation of topographic Rossby waves. In this section we con-
sider the motion on this slower timescale to derive a single prognostic equation with one
∂
∂t

rather than three.
We start from the shallow water equations with Φ = gη as in the previous section,

and perform a scale analysis taking U as a typical horizontal velocity magnitude, L as a
typical horizontal length, and T as a typical time scale.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −∂Φ

∂x
, (3.51a) eq:S1

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −∂Φ

∂y
, (3.51b) eq:S2

UT−1 U2/L fU fU typical magnitudes (3.51c)
(3.51d)

To evaluate the relative importance of the first two terms with respect to the third one,
we can define the Rossby number as the ratio between the different magnitudes of the
terms

Ro =
1

fT
,

U

fL
. (3.52)

When Ro � 1, as is the case for the earth, the flow is close to geostrophic balance and
we can linearise about this state. Expanding the velocities as u = u0 + Ro u1 +O(Ro2)
and v = v0 + Ro v1 + O(Ro2), at the leading order in Ro the geostrophic balance (also
justifiable by the Taylor-Proudman theorem) is

v0 = vg =
1

f

∂Φ

∂x
, (3.53a)

u0 = ug = − 1

f

∂Φ

∂y
, (3.53b)

∇ · u0 = 0, (3.53c) eq:GeostrophBal

where ug is the 0-th order geostrophic velocity. To evaluate the importance of terms pro-
portional to the free surface height η, appearing on the right hand side of (3.51a),(3.51b)
and in the conservation of mass, we consider the non-dimensionalised continuity equation

Ro
(∂Φ

∂t
+∇ · (uΦ)

)
+∇ · (uH(y))

L2
R

L2
= 0, (3.54)

where
H0H(y) = H0 + εH1(y), (3.55)

and LR =
√
gH0/f is the Rossby deformation radius. For Ro � L2

R

L2 and L ∼ LR it
follows that variations of the free surface height η/H0 � 1, such that terms involving
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time-derivatives are small. For this reason, corrections of Φ are higher order and we do
not consider its expansion. Similarly for consistency we must assume that ε ∼ Ro.

Returning to dimensional form, we now consider the first order expansion

∂u0

∂t
+ (u0 · ∇)u0 − fv1 = 0, (3.56a) eq:g1

∂v0

∂t
+ (u0 · ∇)v0 + fu1 = 0, (3.56b) eq:g2

∂Φ

∂t
+ gH0∇ · u1 + u0 · ∇gH1 = 0, (3.56c) eq:g3

where ∇ · (u0Φ) = 0 because of the definition of geostrophic balance. We now want to
re-write ∇·u1 in terms of u0. We can use (3.56a) and (3.56b) to get an expression for u1

∇ · u1 =
1

f

∂

∂x

(
−∂v0

∂t
− (u0 · ∇)v0

)
+

1

f

∂

∂y

(
∂u0

∂t
+ (u0 · ∇)u0

)
, (3.57) eq:nlu

and substituting (3.57) into (3.56c), we obtain

∂

∂t

(
∂v0

∂x
− ∂u0

∂y
− fΦ

gH0

)
− fu0

H0

· ∇H1 + (u0 · ∇)

(
∂v0

∂x
− ∂u0

∂y

)
+
∂u0

∂x
· ∇v0 −

∂u0

∂y
· ∇u0 = 0.

(3.58)

This step doesn’t follow unless H1 = H1/f or something?? From Peter hand written
notes: we add the last term in 3.53 (−f 2Φ/gH0) and ignore higher order terms in Φ.
Rewritten in terms of Φ (using the gesotrophic equations (3.53c)) and replacing subscript
zero by subscript g we obtain

∂

∂t

(
∂2Φ

∂x2
+
∂2Φ

∂y2
− f 2Φ

gH0

)
− ug · ∇

(
fH1

H0

)
+ ug · ∇

(
∂2Φ

∂x2
+
∂2Φ

∂y2
− f 2Φ

gH0

)
= 0, (3.59)

which can be written in the more compact form(
∂

∂t
+ ug · ∇

)
︸ ︷︷ ︸

Dg
Dt

(
∂2Φ

∂x2
+
∂2Φ

∂y2
− f 2Φ

gH0

− fH1

H0

)
︸ ︷︷ ︸

Q

= 0. (3.60) eq:PVY

We have again a potential vorticity (PV) equation, termed the quasigeostrophic potential
vorticity equation

DgQ

Dt
= 0, (3.61) eq:QuasiGeoPV

with the PV expression for Q including and extra term that takes into account the height
variation of the lower boundary. Marching (3.61) forwards in time gives a rule for updating
P , which is conserved along the geostrophic flow ug. Similarly by solving the elliptic
equation

Q =
∂2Φ

∂x2
+
∂2Φ

∂y2
− f 2Φ

gH0

− fH1

H0

, (3.62)

for Φ, subject to suitable boundary conditions, we can in turn instantaneously determine
the geostrophic velocity ug and any other flow quantities.
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This structure is common to a large family of models, for example spherical geometries,
three-dimensional models, and non-linearity of the inversion operator (with higher order
corrections). In contrast to the shallow water equations, we now have only one time
derivative, and thus only one class of wave modes is described by (3.61). Thus is the slow
topographic Rossby-wave we consider in the previous section.

3.4.6 3-D geostrophic flow on the β-plane

To demonstrate how the form of the potential vorticty equation varies in accordance with
different physical scenarios, we now consider a more general system with variations in
depth z, due to stratification, and variations in latitude y due to the Coriolis force (here
captured by the β-plane approximation (3.10)). This approximation renders the equations
more tractable but equally, captures a potential vorticty gradient in the background state,
thus allowing for Rossby waves. This is in contrast to the previous section, where Rossby
waves arose as a consequence of the fluid depth depending on y.

To account for stratification we write the density and pressure fields in terms of their
hydrostatic and non-hydrostatic components ρ′(x, t) = ρ′s(z) + ρ̃(x, t), p′(x, t) = p′s(z) +
p̃(x, t) respectively, while ρ0 is used to denote a background density. Similarly the velocity
field is decomposed as u = ug + ua, in terms of its geostrophic

ug =

(
1

f0

∂Φ

∂x
,− 1

f0

∂Φ

∂y
, 0

)
, where Φ = −p̃/ρ0, (3.63)

and ageostrophic components ua. The latter accounting for the flow induced when ∇ρ̃ 6=
0. Due to the assumption of Ro� 1 we have |ua| � |ug|. Following [50] (chapter 5), who
proceed with their derivation from the Boussinesq primitive equations (3.9), the potential
vorticity equation in this scenario is given by(

∂

∂t
+ ug · ∇

)
1

f0

(
∂2Φ

∂x2
+
∂2Φ

∂y2
+

∂

∂z

f 2
0

N2

∂Φ

∂z
+ βy

)
= 0, (3.64) eq:PVbeta

where the term N2 = − g
ρ0

dρ′s
dz

gives information about the background density. This form
of quasi-geostrophic equation hides the ageostrophic circulation ua, however its velocity
component wa can be recovered from the density equation(

∂

∂t
+ ug · ∇

)
ρ̃− wa

ρ0

g
N2 = 0 (3.65)

while its horizontal components (ua, va) follow from the continuity condition. In the case
of rigid vertical boundaries wa = 0 and then

Dg

Dt
ρ̃ = 0. (3.66)

such that the time evolution of ρ̃ on the boundaries must be included in boundary con-
ditions on Φ. Alternatively for the case of a non-rigid vertical boundary an appropriate
kinematic condition for the free surface must be satisfied. The physical interpretation of
this model follows from the terms comprising the materially conserved potentially vorticity

Q =
∂2Φ

∂x2
+
∂2Φ

∂y2︸ ︷︷ ︸
relative vorticity

+
∂

∂z

f 2
0

N2

∂Φ

∂z︸ ︷︷ ︸
stretching term

+ βy︸︷︷︸
planetary vorticity

. (3.67) eq:PV_3DGeostroph



3.4. Shallow water equations 115

3.4.7 Models comparison and examples
sec:ModelsRecap

As evidenced by the previous two sections, there is a general class of models of the form

D

Dt
Q = 0, ψ = L(Q− f), (3.68)

for which a materially conserved quantity Q, akin to the potential vorticity is evolved by
the geostrophic flow. The specifics of the particular flow are contained within the form
of the elliptic operator (which allows the determination of other flow quantities) and are
given by

2D: L =

(
∂2

∂x2
+

∂2

∂y2

)−1

(3.69a)

2D-SWE: L =

(
∂2

∂x2
+

∂2

∂y2
− 1

L2
R

)−1

(3.69b)

3D-QG: L =

(
∂2

∂x2
+

∂2

∂y2
+
f 2

N2

∂2

∂z2

)−1

(3.69c)

2D-SQG: L =

(
∂2

∂x2
+

∂2

∂y2

)−1/2

(3.69d)

for the 2D vortex dipole, 2D shallow water equations, 3D quasi-geostrophic flow (assum-
ing f,N are both constant) and the surface quasi-geostrophic flow respectively. While
routinely used by atmospheric fluid dynamicists open questions still exits about the well
posedness of these equations.

3.4.7.1 2D versus SQG

To highlight the differences between these systems, we can take a look at some examples
of 2D and SQG turbulence.

Two-dimensional turbulence is a useful mathematical tool to approximately describe
large-scale motion in the ocean and atmosphere. In two-dimensional turbulence the small
scale structures are passive whereas in surface-quasi geostrophic turbulence the small
scales become active and this different behaviour is then reflected in the spectra.

The surface quasi-geostrophic (SQG) system can be derived from 2D system by adding
boundary conditions. When the effect of boundaries dominates over the fluid interior, one
obtains the SQG system with the exponent of L now −1/2. In this sense, SQG is more
‘local’ and more potentially singular than 2D model. Both of these aspects are reflected
by the Green’s function of a point vortex, which behaves as ∼ 1/|x| and ∼ log(|x|) for
the SQG and 2D flows respectively.

By comparing numerical simulations of 2D and SQG turbulence (figure 3.13), one
notices that both present vortical structures. The main difference lies in the fact that while
active down to the small scales in SQG, these structures are passive in 2D turbulence.

Another nice example where the active/passive dynamics is recognizable is the vortex
dynamics that develops from a smooth elliptical initial density/temperature perturbation
(see figure 3.14). When the same initial state is let evolve under the SQG and 2D flow,
filaments are shed from the vortex after some time in both cases. It only in SQG however,
that the shear instability also appears along the filaments as can be seen in figure 3.14
for t = 26. In 2D, no such instability is present and the vortex evolves towards a more



116 Chapter 3. Peter Haynes’ lecture notes

symmetrical form. As we will shall see in more detail in section 3.5, the slow dynamics
is the vortex dynamics but it also allows for waves irrespective of the initial conditions
prescribed.
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Figure 3.13: Comparison between 2D and SQG turbulence. Left: Snapshot of a vorticity
field in a high-resolution numerical simulation of the 2D Navier-Stokes equations. Caption
and sources copied from [2]. Right: surface quasi-geostrophic (SQG) turbulence. The plot
shows surface buoyancy (an advected scalar analogous to the vorticity) in a freely-decaying
simulation at a resolution of 1024 × 1024. Note that the vortices at all scales develop
from a filament instability. Caption and sources copied from [29]

fig:2Dturbulence
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Figure 3.14: Evolution of an eccentric ellipse-like density perturbation (in terms of its
temperature field) by the SQG flow (left) and 2D flow (right). Only in the SQG flow does
the spinning vortex undergo a shear instability which leads to smaller scale vortices being
shed. Caption and sources copied from [24]

fig:2Dvortices

3.4.7.2 3D-QG

To illustrate the common features of 2D and QG turbulence, [49] performed a series of
simulations whereby QG turbulence simulations were forced at large scales (figure 3.15
right) to demonstrate a direct cascade of enstrophy from large to small scales, and forced
at small scales produce an inverse cascade of energy to larger scales (figure 3.15 left).
This dual cascade phenomena being characteristic of 2D turbulence [2]. In both cases
vortices organise in elongated coherent vertical structures. This is due to an anisotropy
linked to horizontal advection. This preferential direction along which the flow organise,
shows how quasi-geostrophic turbulence (also referred to as Charney turbulence) behaves
similarly to 2D turbulence.
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Figure 3.15: Snapshots of potential vorticity field of high resolution numerical simulation
of 3D-QG with large-scale forcing (left) and small-scale forcing (right). Both simulations
show self-orgnisation leading to dominating vertical structures with opposing signs, albeit
more elongated for smaller scale forcing. Simulations from [49]

fig:3DQG

3.4.7.3 Vortices in the ocean

An example of coherent vortices in a stratified rotating flow are shown in figure 3.16.
The Mediterranean sea where it extends into the Atlantic ocean provides a salty plume
of water at around 1000 meters below the surface. This represents some sort of potential
vorticity Q anomaly, which, then breaks up into eddies lasting a long time (they can even
be observed on the other side of the Atlantic). As expected from the QG equations, these
anticyclonic eddies can be seen in the velocity field (plot on the lower left), and have
a corresponding structure in their stratification (density or temperature) field as well.
Although the QG equations capture some of these dynamics, it is complicated to point
to which process is the cause and which one is the consequence, as they evolve following
DgQ/Dt and determined as prognostic variables from one another.

3.4.7.4 Vortices in the stratosphere

Following the Australian wildfire in 2020, smoke released into the atmosphere and gave rise
to long lived vortices (several months), which circumnavigated the southern hemisphere
(see figure 3.17). What was unusual about this event, was that it induced a stratospheric
perturbation of the same order of magnitude as a volcanic eruption [27]. It is thought
that the generation of anti-cyclonic vortices, occurred due to the particulate composition
(carbon) of the smoke clouds, which led to substantial radiative heating. In the context
of the potential vorticity equations, we have an extra forcing term that results into a
coherent circulation of the vortex retaining the smoke in the atmosphere [27].
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Figure 3.16: Vertical sections (latitude in degrees versus depth in meters) of (a) tempera-
ture, (b) salinity. (c) Geostrophic velocity across meddy, (d) density anomaly referenced
at 1000 m depth [4]

fig:meddies

3.5 Spontaneous wave generation
sec:Spontaneous

So far, we have reduced our initial system of five freely evolving fields (primitive equa-
tions), given by five prognostic equations, to a system of three freely evolving fields (shal-
low water equations), given by three prognostic equations, to a system where we only have
one prognostic equation and one evolving field. The potential-vorticity equation. From
a dynamical systems perspective, we could now imagine our phase space as being simply
a curve along which the system evolves slowly. But how precise is this picture? We can
proceed in two ways.

3.5.1 Ertel’s potential vorticity

The first approach, is to verify whether these equations are well-posed, meaning if we
give the initial conditions, does the system remains well-behaved and definable for all
successive times? An exact results is provided by Ertel’s potential vorticity [50]. Given
a hyrdodynamic invariant χ(x, t) such that Dχ/Dt = 0, this statement says that for an
inviscid fluid

ρ
DQ

Dt
= ∇χ · ∇p×∇ρ−1, when Q =

ζg · ∇χ
ρ

. (3.70)

By choosing the invariant χ to be a function of pressure and density only (typically
potential temperature is used), we have ∇χ · (∇p × ∇ρ−1) = 0 such that DQ/Dt =
0. Consequently we can find a potential vorticity, without making any small Rossby
number assumption, that is conserved. The caveat however, is that we cannot, without
approximation, deduce the velocity, density or pressure fields directly from Q and thus
are unable to determine the evolution of the flow.
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Figure 3.17: Spatio-temporal evolution and thermodynamic properties of the vortex gen-
erated by Australian wildfires in 2020. (a) Composite horizontal sections of the vortex
in terms of its vorticity. (b) Corresponding vertical sections. (c-e) Composition of the
vorticity, meridional wind, ozone and temperature anomalies in the longitude altitude
plane [27].

fig:AustraliaWildfire

Because of the complexity of the problem, we can use an approximate result instead,
where we consider some inversion operator L such that LQ gives us all the other flow
quantities (u, ρ, etc.). In this slow flow approximation, once we know L, we can pre-
dict the evolution of the system. However, there are two main limitations of considering
these slow equations. The first is that in order to find a expression for the operator L,
we typically must assume geostrophic Ro � 1 and hydrostatic balance. Should we try
to generalise L for less restrictive assumptions the equations break down and finite-time
singularities arise. An example of this is frontogenesis, whereby contrasts in velocity and
buoyancy in a rapidly rotating fluid are concentrated into frontal regions [25,45]. The sec-
ond problem is that while the equations do not include the evolution of gravity waves, as
they are fast evolving features (quasi-geostrophic approximation filters out gravity waves),
both simulations [13] and models [52] report that even for well balanced initial data, the
slow flow gives rise to a fast motion.

3.5.2 Breakdown of quasi-geostrophic balance
sec:BreakdownQGBal

The second approach to determining the precision of this picture is to prove, for the
Boussinesq primitive equations (3.5), the existence of a ‘slow’ manifold [53], as sketched
in figure 3.18. If such a manifold exists, it implies that a suitable initialisation can provide
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a result that is inertia-gravity wave free, which in-turn justifies the description of the slow
balanced flow by a model of reduced dimensionality. Although this is an attractive idea,
we demonstrate in this section that even for Ro� 1, exponentially small inertia-gravity
waves (IGWs) are excited, and hence the non-existence of an invariant slow manifold
[52, 53]. Crucially this implies that the time-scale separation between a slow motion in
hyrdostatic and geostrophic balance and fast inertia-gravity waves, is not exact.

Figure 3.18: Schematic of the slow-manifold, in terms of slow s1, s2 and fast f state
space variables. The slow manifold is often implicitly assumed to be the exactly invariant
manifold, capturing the adjustment due to fast IGWs whilst simultaneously devoid of fast
motion [53].

fig:SlowManifold

Due to the existence of an exact three dimensional solution, we consider Boussinesq
primitive equations, for an inviscid fluid with rotation vector f constant and in the ver-
tical. For the case of background stratification

ρ′ = ρs(z) + ρ̃(x, t), p′ = ps(z) + p̃(x, t), (3.71)

and a uniform shear, (3.5) admits the solution

(u, v, w, φ,B) = (Σy, 0, 0,−1

2
f0Σy2, 0), (3.72) eq:ShearSolution

where Φ = p̃/ρ0 and B = −gρ̃/ρ0 are used to denote the geopotential and buoyancy
respectively and −Σ is the constant vorticity of the uniform shear flow. Substituting
(3.72) into (3.5) we look for plane wave solutions of the form

(u′, v′, w′, φ′, B′) = (u(t), v(t), w(t), φ(t), B(t)) expi(k(x−Σyt)+ly+mz), (3.73) eq:ShearPert

with a time-dependent wavenumber k(t). Due to the particular form of (3.73), the nonlin-
ear terms vanish such that the full PDE transforms into a set of linear ordinary differential
equations (ODE)
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u̇+ (Σ− f)v = −ikφ, (3.74)
v̇ + fu = −i(l − Σkt)φ, (3.75)
ẇ − b = −imφ, (3.76)

ḃ+N2w = 0, (3.77)
ku+ (l − Σkt)v +mw = 0, (3.78) eq:ShearDistODEs

where N2 = − g
ρ0

∂ρs
∂z

, the buoyancy frequency is assumed to be constant. The disturbance
solution is such that advection can only occur perpendicular to the plane k(t) ·x = const.
This ensures that disturbance quantities remain constant on a given plane. (3.78) which
describes the evolution of five quantities, with four time-derivatives and one constraint
equation. These can be written as a third order ODE. Due to the fact that the potential
vorticity is constant in the basic state, we can further reduce this to the following second
order, albeit non-autonomous, ODE

ζ̈ + b(t)ζ̇ + c(t)ζ = N2 k2 + (l − Σkt)2

k2 + (l − Σkt)2 +m2
, (3.79) eq:SpontaneousWaveODE

with

b(t) =
2Σkm2(l − Σkt)

[k2 + (l − Σkt)2][k2 + (l − Σkt)2 +m2]
, (3.80)

c(t) =
(f − Σ)m2

k2 + (l − Σkt)2 +m2

[
f − 2Σk2

k2 + (l − Σkt)2

]
+

N2[k2 + (l − Σkt)2]

k2 + (l − Σkt)2 +m2
, (3.81)

where f is the Coriolis frequency and N the constant Brunt-Väisälä frequency (see [52]
for details and derivation).

To consider the slow balanced motion we re-introduce the Rossby number, here defined
as

ε =
|Σ|
f
� 1, (3.82)

to be a small parameter. A measure of the separation between the slow motion and
IGWs this allows us to consider departures from the slow balanced motion. We define the
Prandtl number and aspect ratio as

S = N2/f 2, δ = m/k, (3.83)

both formally O(1) and introduce the Froude number

F =
|Σ|δ
N

= ε
δ

S1/2
� 1, (3.84)

also considered a small parameter, which implies than gravity wave inertia is much
greater than the flow inertia induced by shear. Reflecting the fast rotation and strong
stratification of the atmosphere and oceans, we focus on the quasi-geostrophic limit
ε� 1, F = O(ε)� 1 thus ensuring a formal frequency separation [53].

Finally by rescaling time t → t/|Σ| and choosing the origin of time such that l = 0,
we obtain

ε2
[
ζ̈ + b(t)ζ̇

]
+ c(t)ζ = S

1 + t2

1 + δ2 + t2
, (3.85) eq:scaledODE
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with

b(t) =
−2δ2t

(1 + t2)(1 + δ2 + t2)
, (3.86)

c(t) =
δ2(1± ε)

1 + δ2 + t2
[
1± 2ε

1 + t2
]

+
S(1 + t2)

1 + δ2 + t2
, (3.87)

where the choice of sign ± distinguishes between anticyclonic ε and cyclonic shear −ε. In
this limit we can proceed in a standard way and perform a formal perturbation expansion
in powers of ε. This yields the asymptotic but not convergent solution

ζbal = ζ0 + εζ1 +O(ε2), (3.88)

with
ζ0 =

1 + t2

1 + δ2/S + t2
, ζ1 =

±δ2(3 + t2

S(1 + δ2/S + t2)
. (3.89)

Alternatively we may consider the limit t� 1

ε2ζ̈ + Sζ u S. (3.90)

This limit is preferable as it leads to an unambiguous separation of the balanced motion
and IGWs. The solution in this limit is given by

ζ ∼ 1 + C± cos(S1/2t/ε+ ϕ±), (3.91) eq:LargeT_limit

where C±, ϕ± ∈ R and the signs refer to the limits t → ±∞. The constant term corre-
sponds to the slow balanced motion, which is steady in the limit |t| → ∞, as the effect
of rotation vanishes. The rapidly oscillating term corresponds to the IGWs. While it is
possible to prescribe C− = 0 for t→ −∞ this would require C− 6= 0. This suggests that
a connection formula exists for C+, ϕ+ ⇐⇒ C−, ϕ− which in-turn implies non-vanishing
inertia gravity waves and thus the non-existence of an invariant slow manifold. Indeed by
initialising (3.85) with ζbal and time integrating from −T to T , for T sufficiently large,
it is possible to numerically demonstrate the generation of IGWs in this model, despite
starting from a well balanced state, as shown in figure 3.19.

In order to determine the amplitude of the IGWs generated it remains to calculate
the constants defining the connection formula (3.91). While inertia gravity waves are not
captured by ζbal, due to the exponentially small terms which arise, they can be determined
by computing a WKB solution to (3.85) of the form

ζ = ζigw = (g0 + εg1 + . . .) exp(iε−1

∫ t

0

ω(t′)dt′). (3.92)

Substituting this expression into (3.85) and solving we find that the frequency, corre-
sponding to inertia-gravity waves, is given by

ω = ±S1/2(
1 + δ2/S + t2

1 + δ2 + t2
)1/2. (3.93)

The generation of IGWs is associated with the break down of the perturbation expansion
solution, indicated by the dashed line in figure 3.19, which leads to the largest value of

exp(iε−1|Im
∫ t

0

ω(t′)dt′|). (3.94)
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Figure 3.19: Time evolution of (3.85) for S = δ2 = 10 and ε = 0.25. The true solution
(solid line) remains well balanced and close to the approximate solutions (dashed line)
until we reach t u 0, at which point the Stokes’ line is reached at the generation of IGWs
occurs [52].

fig:spontaneous_IGWs

For ζbal the singularity occurs for complex values of t given by the Stokes line

t = ±t∗ = ±i(1 + δ2/S)1/2, (3.95)

at which the asymptotic solutions changes from exponentially small to exponentially large.
By re-scaling and considering solutions near the singularity t∗ and then matching with
the balanced solutions it is possible to calculate the connection formula [52].

Figure 3.20: Upon crossing the Stokes-line the asymptotic solution changes from being
exponentially small to exponentially large. By considering the WKB solution of (3.85)
the oscillation amplitude is found to scale ∼ exp(−α/ε) [53].

fig:StokesLine_SlowManifold

Having calculated the form of ζ = ζbal + ζigw we can take the limit t → ∞, and
comparing with the expression for (3.91) to find that

C+ u
2|K|
S1/4

e−α/ε

ε1/2
, (3.96)

where |K| ∼ O(1) is a constant. This establishes that IGWs exponentially small in
Rossby number lead to the breakdown of quasi-geostrophic balance, and conversely that
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IGW generation increases with increasing Rossby number. That no exact invariant slow
manifold exists to describe this slow balanced motion for the particular case of the sheared
Boussinesq equations is also consistent with the theory of dissipationless dynamical sys-
tems. This is in contrast for dissipative dynamical systems for which attracting slow
manifolds can be routinely obtained [53].

Due to the small amplitudes and lengthscales of these waves, the numerical simulations
(for Ro � 1 to ensure a balanced motion) which are required to capture exponentially
small terms, become delicate. Nevertheless it is possible to exploit scenarios where only
locally is Ro ≥ 1 so as to conduct numerical observations of spontaneous wave generation.
Using this idea [13] conducted simulations of ocean turbulence modelled by the primitive
equations, subject to the Boussinesq and hydrostatic assumption. In their model IGWs
are generated at the vertical surface, propagate downwards into the deep ocean where
Ro � 1. Figure 3.21 shows a snapshot of the vertical velocity taken in the lower half
of the domain, isolating the quasi-geostrophic and IGW contributions. Similarly figure
3.22 shows the latter stages of the evolution of a IGW wave-packet at 12h intervals. The
appearance of larger vertical velocities is found to coincide with regions of strong relative
vorticity. In both case the IGW motion is notably of a much smaller scale.

Figure 3.21: Large scale dynamics of the primitive equations arising from a baroclinic
instability in terms of vertical velocity (measured in ms−1). (a) total vertical velocity, (b)
quasi-geostrophic contribution, (c) unbalanced motion contribution [13]

fig:Primitive_VerticalVelocity_IGW
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Figure 3.22: Generation and evolution of a IGW wave-packet by a vorticity filament from
top to bottom. Left: unbalanced vertical vorticity, right: surface relative vorticity [13]

fig:Primitive_WavepacketsVorticity_IGW

3.6 Wave propagation and wave mean-flow interaction
sec:WaveMeanFlow

To motivate this section and highlight the need to account for wave-mean flow interaction
we start by considering slow waves, in a system with one time derivative, and subsequently
make comparisons between observations and theoretical predictions. Rather than consid-
ering the full rotation vector f(ϕ) which has latitudinal dependence λ we restrict our
analysis to its vertical component on the so called β-plane (see definition (3.10)). Making
this approximation, the 2D vorticity equation on the β-plane is given by

∂ζ

∂t
+ u · ∇ζ + βv = D, where ζ = ∆ψ, u = (−∂ψ

∂y
,
∂ψ

∂x
), (3.97) eq:2dVorticityBetaplane

and D is assumed to be a known linear dissipative term. Considering the case where
the background state is at rest u = 0 we linearise (3.97) and consider perturbations here
denoted by tilde

∂ζ̃

∂t
+ β

∂ψ̃

∂x
= 0. (3.98)

Assuming these perturbations take the form of plane waves, that is ψ̃ = Re(ψ̂ exp(i(kx+
ly − ωt))), we obtain the dispersion relation for Rossby waves

ω = − βk

k2 + l2
, (3.99) eq:disp_RossbyWaves

whose phase speed is always westward but their group speed can be eastward or westwards.
As per section 3.4.4 in which variations of the fluid depth depending on latitude y were
considered to investigate slow modes, we require that β 6= 0 to obtain Rossby waves.
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Figure 3.23: Comparison between theoretically predicted and observed Rossby wave phase
speeds [5]. Hollow circles (Atlantic Ocean), solid dots (Pacific Ocean) and solid line
(theoretical prediction). Theory and observation are found to systematically disagree
outside the tropical latitudes ±10o.

fig:chelton96_RossbyPhaseSpeeds

From (3.99) it can also be seen that their phase speed depends on latitude as confirmed
in figure 3.23. Alternatively had we considered the shallow water equations, for which the
vorticity ζ = ∆2ψ − ψ/L2

R, where L2
R = gH/f 2

0 is the Rossby radius of deformation, we
would instead obtain

ω = − βk

k2 + l2 + 1/L2
R

. (3.100)

These waves are an essential communicator of information in the atmosphere and oceans,
and describe the transient adjustment of the oceans circulation to large scale forcing [5].
Figure 3.23 compares theoretical predictions and observations from satellite altimetery
at different latitudes for Rossby wave phase speeds. While the comparison is good for
tropical latitudes ±10o, their is systematic discrepancy for other latitudes

To understand the interaction of Rossby waves with the mean flow, we now consider
perturbations to the basic flow u = (U(y), 0) in order to derive a wave activity relation
for the quasi-geostrophic equations. This equation will serve to describe the propagation
and dissipation of Rossby waves. The perturbed vorticity equation for this scenario is
given by

∂ζ̃

∂t︸︷︷︸
L

+U(y)
∂ζ̃

∂x︸ ︷︷ ︸
L

+ (β − ∂2U

∂y2
)ṽ︸ ︷︷ ︸

L

+ ũ · ∇ζ̃︸ ︷︷ ︸
NL

= D̃︸︷︷︸
L

(3.101) eq:disturbance

where L, NL denote linear and nonlinear terms respectively. Introducing the overbar (̄)
and prime ()′ notation, to denote the x mean and x dependent fluctuations about the
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mean respectively we write the linearised equations as

∂ζ ′

∂t
+ U

∂ζ ′

∂x
+ ζ̄yv

′ = D′. (3.102)

To demonstrate that waves can gain or loose energy from the mean flow in a reversible
wave we multiply the previous expression by ζ ′, and average in x to obtain

∂

∂t
(
1

2
ζ̄ ′2) + ζ̄yv′ζ ′ = ζ ′D′, (3.103) eq:qprime_energy

where it is implicitly assumed that primed quantities are periodic in x. From the Taylor
identity we have that

v′ζ ′ =
∂

∂y
(−u′v′),

v′(
∂v′

∂x
− ∂u′

∂y
) =

∂

∂y
(−u′v′) +

∂v′

∂y
u′,

= − ∂

∂y
(u′v′),

implying that the eddy momentum flux convergence is equal to the meridional flux of
eddy potential vorticity (the last step follows from the horizontal divergence). Assuming
the mean quantities are varying slowly in time (such as a flow in geostrophic balance),
allows us to write (3.103) as a wave activity conservation relationeq:Taylor_IDeq:Taylor_ID

∂

∂t
(
1

2

ζ̄ ′2

ζ̄y
) +

∂

∂y
(−u′v′) =

ζ ′

ζ̄y
D′, (3.104) eq:Taylor_ID

∂

∂t
(A) +

∂

∂y
(F) = DA, (3.105) eq:wave_energy_conservation

where A represents a wave activity density, F a wave flux and D dissipation of wave
activity. We note that in contrast to the analysis carried out in 3.5.2, these results
are independent of the WKB assumption, in that we do not require scale separation.
Nevertheless it is helpful that (3.105) be consistent when there is scale separation. This
is ensured by satisfying the group velocity property 〈F〉 = 〈A〉cg, where 〈.〉 is used to
denote a phase average. This removes the gauge freedom in F , defined only up to a
constant/divergence free wave flux.

It is noteworthy that the term quadratic in u is akin to a Reynolds stress terms. Typ-
ically these appear when considering fluctuations about a mean in turbulent flows. For
this particular case the terms resemble those obtained if v u 0 for the quasi-geostrophic
equations. Much like the Reynolds stresses, this terms plays the role of extracting energy
from the mean flow, suggesting an intimate connection between the propagation of waves
and the forcing of the mean flow. Indeed for u′v′ < 0 we have northward group propaga-
tion and conversely southward group propagation for u′v′ > 0. Generally these relations
between group propagation and eddy fluxes hold only under the usual Ro� 1 assumption.

To expand on the connection with group propagation we consider the forcing of a
mean flow in x due to waves. Writing the x component of the primitive equations as

∂u

∂t
+

∂

∂x
(u2) +

∂

∂y
(uv)− fv = − ∂

∂x
(p/ρ), (3.106)
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Figure 3.24: Time-height section of monthly mean zonal winds (m/s) at equatorial sta-
tions: Canton Island, 3oS/172oW (Jan 1953 - Aug 1967), Gan/Maledive Islands, 1oS/73oE
(Sep 1967 - Dec 1975) and Singapore, 1oN/104oE (since Jan 1976) Source:Fu-Berlin At-
mospheric Dynamics Group

fig:QB0_TimeSeries_FUB

expanding variables as χ = χ̄ + χ′ in terms of their mean and fluctuating components,
and averaging in x we have

∂ū

∂t
= − ∂

∂y
(u′v′) =

∂

∂y
(F (y)), (3.107) eq:meanflow_energy

where the terms on the right hand side are the momentum flux and wave activity flux
respectively. From this we have that the force experienced by the mean flow is equal
to the divergence of wave activity flux. Or alternatively the force acting on the mean
flow due to the eddies. Combining expressions (3.105) and (3.107) we arrive at the non
acceleration theorem

∂ū

∂t
= DA −

∂A
∂t
, (3.108) eq:non_acceleration_theorem

which implies that unsteadiness or dissipation are essential in order to induce a force on
the mean flow. While (3.108) applies generally, the form of terms DA,A including their
sign may differ when considering different scenarios such as stratification for example. In
particular it is worth noting that the right hand side of (3.107) is a non-local function
of its argument u, thus it captures the non-rotating component of the system including
internal gravity waves (should stratification be included), but makes it challenging to
predict the dependence of u′v′ on u.

As discussed by [37] this interaction of multiple internal waves with a mean flow can
be used to explain phenomena including the quasi-biennial oscillation (QBO). Shown in
the time-height sections of figure 3.24, this oscillation is seen to represent the alternation
of the equatorial zonal wind between easterlies and westerlies.
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Figure 3.25: Profiles of the mean velocity u and wave momentum flux F for a single wave
forcing with Λ = 0.1. The vertical co-ordinate ζ denotes height and the curves are labeled
with time [37]. (* ζ is used to denote height in this instance only)

fig:QBO_PLUMB_OneWave

In this case internal gravity waves provide a force on the mean flow causing it to
change form. If this change does not result in an equilibrium, we arrive at a situation
reminiscent of relaxation oscillations. Whereby the form of the waves supported changes
due to the mean flow’s change which in turn results in further changes of the waves. To
model this phenomena, [37] considered the 2D (x, z) interaction of two internal waves,
with and without dissipation, for the primitive equations with uniform mean density.
Assuming waves of the form ψi = Re(ψ̂i(z) exp(iki(x− cit))), the adjustment of the mean
flow is given by

∂u

∂t
− ν ∂

2u

∂z2
= −

∑
i

∂Fi
∂z

, (3.109)

Fi(z, t) = Fi(0) exp(−
∫ 0

z

Nµ

ki(u(z′, t)− ci)2
dz′), i = 1, 2, (3.110) eq:Plumb1977_QBO_model

where Fi denotes the wave momentum flux, ν the viscosity, N the buoyancy frequency
and µ the thermal dissipation rate. Figures 3.25 and 3.26 contrast the results of the
model comprising a one and a two wave nonlinear integration for varying degrees of the
dissipation parameter Λ. The results of their model highlight that multi-wave interactions
and dissipation in the critical layer (see section 3.6.1) are both required to realise this
phenomena.

Laboratory realisations of spontaneous flow reversals mimicking the QBO mechanism
have been conducted by GFD-online courtesy of (Satoshi Sakai, Isawo Iizawa, Eiji Ara-
maki). In their experiment a chamber of stratified salt-water is is actuated at its surface
by a rubber membrane, thus creating an internal gravity wave and a mean current. When
actuated at a sufficiently large amplitude reversals of the mean flow induced are observed.

3.6.1 The Rossby wave critical layer problem
sec:CriticalLayer

In this section, we consider a simple mathematical model to describe Rossby waves prop-
agating in a shear flow. This could be in the extra tropical atmosphere where waves

http://dennou-k.gfd-dennou.org/library/gfd_exp/exp_e/exp/bo/1/res.htm
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Figure 3.26: Nonlinear integration of the model (3.110) presented in terms of time(τ)-
height(ζ) series of the mean zonal velocity u for varying values of the dissipation parameter
Λ = νNµ

kcF0
. In the absence of dissipation no critical levels/layers occur and the wave driving

is weakened [37]. Only by allowing for dissipation can the waves incident on the critical
layer induce a force on the mean flow. (* ζ is used to denote height in this instance only)

fig:QBO_PLUMB_Dissipation
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propagate upwards from the troposphere to the stratosphere and the background wind,
here modeled as a shear flow, changes intensity with height. As we have seen in the
previous section, including non-linearity and dissipation is an essential ingredient to re-
solving the dynamics in these critical layers and thus explaining phenomenon such as the
quasi-biennial oscillation [37].

The simple model considered consists of the flow configuration schematized in figure
3.27, where the flow U(y) is eastward and increases for positive y and is westward and
decreases for negative y with a change of sign at y = 0. At the top of the figure, there is a
wave source, which generates Rossby waves propagating towards the bottom of the figure
with a defined phase speed c. In this situation, Rossby waves can propagate only if the
flow speed is greater than the phase speed. When they reach the critical layer of speed
inversion y = 0, waves will get trapped at the latitude and cannot propagate in the region
where we have a mean flow in the opposite direction (only evanescent waves exist here
with decaying amplitude). In the narrow region around the critical line, the streamlines
are closed and assume the typical pattern named Kelvin’s cat’s eye.

Figure 3.27: Schematic diagram of Rossby-wave propagation on a shear flow U(y) with a
critical line. Figure and caption taken from [35].

fig:cat-eye

To determine the waves contribution to the mean flow in terms of the momentum flux
u′v′, we define the streamfunction ψ such that the relative vorticity is ζ ′ = ∆ψ′, and
assume the waves propagate steadily in the x direction such that their contribution to
the streamfunction can be written in the form ψ′ = Re(ψ̂(y) exp ik(x− ct)). Then the
linearised and dissipativeless part of equation (3.101) for this system reads

∂2ψ̂

∂y2
− k2ψ̂ = ψ̂

(β − ∂2U(y)
∂y2

)

U(y)− c
(3.111) eq:cat1

with k small. The differential equation (3.111) has a singularity in U = c (with c = 0 in
the particular example considered here). Such singularities can arise in a system when
the equations are simplified via approximations that neglect some terms. In this case it
is the neglect of higher order nonlinear and dissipative terms, akin to those observed in
the study of boundary layers, which we must now include to correctly resolve the flow.
Nevertheless, it is worth emphasising that outside the singular region the approximations
made hold since the effects of the neglected terms are small. Close to the critical layer,
which can be described as a region of defined small thickness in the vicinity to the line
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U = c, other physical processes need to be included. Which of the processes is dominant
and should be added back into the system to resolve the system? All the terms ignored
are those necessary to have a forcing by the waves on the mean flow. It follows that such
forcing can only happen in the critical layer, where non-linearities and/or dissipation
become important.

Considering U(y) = Λy, with Λ > 0, c = 0, and k small, (3.111) reduces to

∂2ψ̂

∂y2
= ψ̂

β

Λy
. (3.112) eq:catex2

Near y = 0 we have a mild singularity with ψ̂ ∼ O(1) and ∂ψ
∂y
∼ O(log |y|). Taking a

Frobenius expansion we can find two solutions, one for positive and one for negative y

y > 0 : ψ̂ = ε

(
A

(
1 +

βy

Λ
log |y|+ ...

)
+B+(y + ...)

)
, (3.113)

y < 0 : ψ̂ = ε

(
A

(
1 +

βy

Λ
log |y|+ ...

)
+B−(y + ...)

)
, (3.114)

where we neglected higher order terms and it is understood that each solution must decay
as y → ±∞. To determine the relation between the coefficients B+ and B−, the solutions
must match at y = 0 to ensure continuity. This demands that we consider the possible
balances arising for (3.101) in the critical layer. Letting V (0) = kψ̂, we have

linear dynamics: V (0)β ∼ Λykζ, (3.115)

non linear dynamics: u
∂ζ

∂x
∼ V (0) log |y|V (0)β

Λy
, (3.116)

v
∂ζ

∂y
∼ V 2(0)

β

Λky2
, (3.117)

implying that the non linear terms cannot be neglected when V (0)/(Λky2) ∼ 1. Owning
to the assumed smallness of the dissipation term D ∼ αζ ′, it is subdominant to the
nonlinear terms. An estimate for the width of the critical layer is thus given by the
balance between the linear and non linear terms

y ≈
(
V (0)

kΛ

)1/2

, (3.118)

and corresponds to the width of the closed streamline region in figure 3.27. We can re-
scale the equations by considering the small parameter ε, such that the thickness of the
critical layer is O(ε1/2). If V (0) = εV , then

y = ε1/2Y, t = ε−1/2T, ζ = ε−1/2Ξ. (3.119)

The non dimensional equation describing the evolution within the critical layer is

∂Ξ

∂T
+ Y

∂Ξ

∂X
+ V

∂Ξ

∂Y
= 0, (3.120)

where V is only a function of x and is not changing rapidly within the critical layer. We
can now match the flow outside the critical layer (approaching it from the two sides)[

∂ψ

∂y

]0+

0−

= B+ −B− =

∫ +∞

−∞
ΞdY, (3.121)
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by enforcing exponential decay for y < 0 setting A = λB− and that µA + νB+ = ψ̂(0),
where λ, µ, ν are known constants. We now have all the necessary information to deter-
mine the constants B+ and B−. a few sentences needed here to connect the analysis with
the following example.

The the momentum flux u′v′ is a measure of the wave propagation. The critical layer
at first acts like an absorber of the waves and eventually as a reflector, as schematically
represented in figure 3.28. In regions where u′v′ > 0, waves propagate southward, and the
opposite, i.e. waves propagate northward, where u′v′ < 0. The vorticity controls whether
the layer is absorbing or reflecting.

Figure 3.28: Time evolution of the vorticity field in the critical layer. Thick dotted curves
are the bounding close streamlines. Thick solid curves are contours of absolute vorticity
ζ + βy. Thin curves are contours of wave relative vorticity ζ ′, with solid curve indicating
positive values and dashed curves indicating negative values. Figure and caption adapted
from Encyclopedia of Atmospheric Science [35].

fig:cat-evolution

When the distortion of the streamline in the critical layer is so strong that it becomes
irreversible, there is a wave breaking phenomenon that can lead to geostrophic turbulence.
An example of Rossby wave breaking is shown in figure 3.29. Numerical simulations by
[31] indicate that when small-scale instabilities are allowed to grow the potential vorticity
field Q is rearranged irreversibly. The mixing of vorticity in the critical layer implies a
negative anomaly in the flow. There is an analogy between the potential vorticity and
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the velocity of the flow, shown in figure 3.29(b) and (c).

Figure 3.29: (a) Coutours of Q or ζ in the narrow critical layer region of an inviscid,
nonlinear Rossby-wave critical layer simulations. (b) Eulerian-mean initial (dashed) and
present (solid) Q(y) profiles. (c) Eulerian-mean flow change δu(y) that results from the
rearrangement. Figures and caption taken from [31].

fig:cat-QU

3.7 2D flow on a β-plane
sec:jets

Let us consider again the vorticity equation for a 2D flow on a β- plane

∂ζ

∂t
+ u · ∇ζ + β

∂ψ

∂x
= ξ +Dζ, (3.122) eq:vorticityJet

where we have introduced an additional forcing term ξ, which could be a stochastic
forcing, and the dissipation that can be expressed as hyperviscosity D = νn∆n. The
relative vorticity and velocity are expressed in terms of the stream function as

ζ = ∆ψ, u =

(
−∂ψ
∂y
,
∂ψ

∂x

)
. (3.123)

This system has no pre-imposed mean flow, so the initial state has no particular
structure or pre-imposed length scales. Letting the flow evolve under (3.122) in a doubly-
periodic domain, subject to a small scale stochastic forcing, the flow naturally assembles
into a set of jets as shown in figure 3.30. The eddy mean flow interaction has organised
the flow in a series of alternating jets, presenting an asymmetry with narrow eastward
jets, associated with a sharp jump in the potential vorticity, and broader westward jets,
associated with a constant potential vorticity. Because they are mostly organised along
the east-west direction, they are also called zonal jets. Due to its ability to capture the
formation and dynamics of such jets, the β-plane is a particularly useful model given
its simplicity. In contrast to the 3D primitive equations, which generate turbulence via
its internal dynamics (the interaction between a slow balanced flow and the fast internal
gravity waves) a stochastic forcing must be applied.



136 Chapter 3. Peter Haynes’ lecture notes

Figure 3.30: Snapshot of the vorticity field with superimposed instantaneous zonal mean
vorticity profile. Right panel, 〈dζ(y)/dy〉 (thin line) averaged over 100 units centered
around the snapshot time and zonal velocity (thick line) multiplied with 100 to fit the
same axes. Figure and caption reproduced from [12].

fig:jets

β-plane jets were initially discovered in the ’70s in the seminar paper by [40], and re-
search has since focused on the mechanisms responsible for the formation and maintenance
of such jets. The classical explanation relies on there being an upscale energy cascade
in 2D turbulence (see review [2]). Energy is injected at smaller scales by the forcing,
then is transferred to larger scales until it reaches a scale at which the β effect becomes
important. This halts the upscale cascade with the consequent formation of these jets,
exemplifying self-organisation with the creation of long-lived coherent structures. Some
examples of jets are the typical structures on Jupiter, as it can be seen in frame (a) of
figure 3.31.

Jets are also important for atmospheric and ocean flows and despite being observed
in several locations they are still not well understood. A combination of model and
observational data in figure 3.31(b) show multiple jet structures in the Southern Ocean.
Observations by [11] of flow as a function of latitude and depth are shown in figure
3.31(c), where red marks the eastward and blue the westward flow, revealing that the jets
are rather deep.

3.7.1 Energy and length scales
sec:jetsenergy

To estimate relevant length scales for the jet systems, we can consider the ratio between
the terms in the vorticity equation (3.122). The ratio between the advection and the β
term gives the Rhine scale

LRh =

(
U

β

)1/2

, (3.124)
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(a)

(b)
(c)

Figure 3.31: (a) Jets and vortices on Jupiter captured by the Juno mission (source NASA
JPL). (b) Map showing the speed of the clockwise Antarctic Circumpolar Current on May
12, 2006, increasing from slow-moving water (blue) to water moving more than one mile
per hour (dark red). The map is obtained via a state-of-the-art ocean circulation model
to produce estimates of ocean conditions of greatly increased accuracy. The model can
merge sparse observations of the Southern Ocean and fill in the blanks to describe the
flow in places where no observations have been taken. Figure from Mazloff/San Diego
Supercomputer Centre. (c) frame-a) Mean zonal currents in the Equatorial Ocean as
a function of depth and latitude. frame-b) Mean absolute geostrophic zonal currents.
Figure and caption adapted from [11].

fig:jetEX

which is related to the latitudinal scale of the jet. The typical velocity U could be, for
example, the square root of the mean kinetic energy, or the strength of the mean flow.
Another problem is that the Rhine scale is not predictive, in the sense that it gives the
width of the jet but only from the measured quantities of the flow, i.e. we require a good
estimate of U a-priori.

Another important parameter is the given input energy rate ε, and the related scales
and energy are

Lε =

(
ε

β3

)1/5

, Eε =

(
ε2

β

)2/5

, (3.125)

which indicates the scales at which the eddies forced at input scales will feel the β-term.
Lε is analogous of the Ozmidov scale in stratified turbulence. Given a damping rate µ,
the ratio between the energy input rate and the dissipation rate gives the total energy

Eµ =
ε

µ
, (3.126)

https://www.whoi.edu/oceanus/feature/corralling-the-wild-and-wooly-southern-ocean/
https://www.whoi.edu/oceanus/feature/corralling-the-wild-and-wooly-southern-ocean/
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which can also give an estimate for the Rhine scale

LRh,µ =

(
ε

µβ2

)1/4

. (3.127)

The scale interval between LRh,µ and Lε is defined as zonostrophic inertial range. The
ratio between the two defines the zonostrophy parameter

Rβ =
LRh,µ
Lε

=

(
εβ2

µ5

)1/20

. (3.128)

If Rβ is small there is no jet formation, if it is large strong and persistent jets can form.
A long term evolution of the energy and vorticity field is shown in figure 3.32. This

illustrates that following jet formation at the beginning, there is an inverse cascade where
jets merge until a final equilibrium is reached. The energy is equally partitioned between
the mean flow and the eddies. For the frictionless run (µ = 0), the total energy keeps
increasing and the flow is unsteady. The jets in this case are observed to undergo repeated
merging events and because the energy keeps increasing, the zonostrophy also increases
leading to the jets becoming stronger and stronger.

Figure 3.32: Long term evolution of energy frames (a), (e) and the corresponding zonal
vorticity frames (b),(f). Left bottom-drag run µ > 0 and right the frictionless run µ = 0.
E is the total energy, and Ez the energy in the zonal flow. Figures and captions are taken
from [12].

fig:jetEvo

3.7.2 Jet formation mechanisms
sec:JetFormation

So far, we have described some properties of the jets and looked at their time evolution,
without discussing how such jets can form. There are two alternative ways of thinking of
the effect of waves on the mean flow, which can be used to describe jet formation [17].

The first one is a momentum flux description. This description considers the quantity
u′v′, which is related to wave propagation as a long term momentum transport

∂u

∂t
= − ∂

∂y

(
u′v′
)
. (3.129)
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There is a force exerted on the flow where the waves are being generated, and the effect
of such force is transmitted by momentum flux through wave propagation to the region
where waves are dissipated, which is where the flow changes.

The second way of thinking is a potential vorticity (PV) flux description. In this
description, the flow changes are related to the local mixing of potential vorticity (here
equivalent to the relative vorticity ζ)

∂ζ

∂t
= − ∂

∂y

(
v′ζ ′
)
, (3.130)

via the Taylor identity (see 3.104). A schematic way of representing this mechanism,
drawn in figure 3.33, relies on the fact that jets have constant potential vorticity between
them. In regions of strong mixing the background gradient of PV is weakened, facilitating
further mixing. Conversely it is strengthened where the background gradient of PV is
large, inhibiting further mixing. This leads to a positive feedback giving rise to a self-
reinforcing mechanism, closely related to the Philips effect [17]. PV gradients are large in
eastward jets and small in westward jets. In this way, we have the formation of a potential
vorticity staircase, which is equivalent to a set of jets.

Figure 3.33: PV mechanism for jet formation, whereby the self-reinforcement of PV gra-
dients arises due to decreased mixing.

fig:PV-jets-sketch

Figure 3.34 sketches and example of how the PV staircase forms. The red dashed line
shows the initial PV profile, and the red solid line is the final PV. In the top drawing, the
eddies mix the PV, resulting in regions higher and lower gradients depending on whether
mixing is favoured of inhibited. The self-reinforcing mechanism further increases and
decreases the mixing in such regions, so that the more extreme situation depicted in the
bottom drawing can occur. Here, the velocity field has reached the state of asymmetric
zonal jets, and steep potential vorticity gradients are co-located with jet core regions.

Such staircase formation is indeed reproduced by numerical simulations [12] and [41]
(see figure 3.35). The PV profile reveals a time evolution from a linear to a staircase
shape, where the size of the constant regions is expanding, as it can be seen from the plot
of latitude potential vorticity in time (figure 3.35 (f)).
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Figure 3.34: Sketch of the staircase formation in PV. The initial PV profile is indicated
by a dashed red line, and it’s development by a solid red line.

fig:PV-staircase-sketch

Figure 3.35: Time evolution of q (here used to denote the potential vorticity Q) (a), u (b)
profiles, and latitude PV anomaly (f). In (a) and (b), the dotted line marks the initial
state, the continuous line the intermediate state and the bold line the final state. Figure
from [41].

fig:PV-staircase-simulations
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3.7.3 Theoretical models of jet formation
sec:JetTheory

The vorticity equation of the β-plane system (3.122), includes the advective nonlinearity
u ·∇ζ describing the interactions between different wave numbers, for example k1 + k2 =
k3 is one possible resonance. Due to the complexity of these equation, some simplifications
must be adopted to make them more accessible. A possible approach, is to describe only
the statistically relevant quantities needed to reproduce the large-scale features and to
parametrize the smaller-scales. In this way, the computational costs are reduced, and
numerical models can simulate the flow without completely neglecting the scales that
they cannot resolve.

Due to the tendency of 2D turbulence, to favour an upscale cascade of energy and an
inverse cascade of enstrophy [2], we proceed by outlining a variation of (3.122), denoted
here and in subsequent sections the nonlinear model (NL)

∂ζ

∂t
+ J(ψ, ζ) + β

∂ψ

∂x
= ξ − µζ +Dζ, where D = νn∆nζ, (3.131)

µ is a constant and ξ a random (in space and time) isentropic forcing. The first linear
term µζ dissipates energy at large scales and the second enstrophy build up a small scales
via a hyperviscoisty νn. The nonlinearity has been expressed in terms of the Jacobian
J(f, g) = fxgy − fygx and the vorticity in terms of ζ = ∆ψ.

Applying the Reynolds decomposition the flow can be expressed in terms of its mean
and fluctuating components

ψ(x, y, t) = ψ(y, t) + ψ′(x, y, t). (3.132)

By assuming ξ = 0 because the forcing is statistically homogeneous, the zonal mean zonal
flow U(y, t) = u(y, t) equation is

∂U

∂t
= v′ζ ′ − µU +DU, (3.133) eq:NL-mean

and for the disturbance part, we get the eddy vorticity equation

∂ζ ′

∂t
+ U

∂ζ ′

∂x
+

(
β − ∂2U

∂y

)
∂ψ′

∂x
+

[
∂ψ′

∂x

∂ζ ′

∂y
− ∂ψ′

∂y

∂ζ ′

∂x
− ∂

∂y

(
∂ψ′

∂x
ζ ′
)]

= ξ − µζ ′ +Dζ ′.

(3.134) eq:NL-eddies

where the relation between the zonal mean vorticity and zonal mean zonal flow ζ =
−∂yU has been used to simply the previous expressions. The system considered so far is
nonlinear and allows interactions between waves and the mean flow as well as wave-wave
interactions. One way of simplifying the nonlinear equations is given by the quasilinear
(QL) approximation, whereby the term in the square brackets in (3.134), representing
wave-wave interactions, is set to be equal to zero. This widely used method removes
the wave-wave interactions that lead to the formation of a new wave number, whilst
interactions of the type kx − kx = 0 (waves leading to a mean flow) and kx + 0 = kx
(wave-mean flow interactions) are still allowed. In practice, (3.133) remains the same as
it only includes wave-mean flow interaction in the wave momentum flux convergence term
v′ζ ′. This simplification leaves us with linear operators, of the form

∂ζ ′

∂t
+ Lζ ′ = ξ − µζ ′ +Dζ ′, where L =

[
(β − ∂2

yU)∆−1 + U
] ∂
∂x
. (3.135) eq:QLzeta
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A particular model that has been investigated [9] is to make the further assumption
that the system is excited by a stochastic in time force, where the noise is δ-correlated,
statistically homogeneous in x and has the property

〈ξ(x1, t1)ξ(x2, t2)〉 = δ(t2 − t1)Ξ(x1 − x2, y1, y2), (3.136)

where the angular brackets denote an ensemble average, and Ξ denotes a two point cor-
relation function [8]. This approach focuses on finding equations for statistical averages.
The two-point correlation function of the vorticity can be written as

〈ζ ′(x1, t1)ζ ′(x2, t2)〉 = Z(x1 − x2, y1, y2, t). (3.137) eq:2corrZeta

We seek an evolution equation for (3.137) in the form

∂Z

∂t
=

〈
ζ ′(x1, t1)

∂ζ ′

∂t
(x2, t2) +

∂ζ ′

∂t
(x1, t1)ζ ′(x2, t2)

〉
. (3.138) eq:Zt

By using (3.135) to express the time derivatives in (3.138), we obtain

∂Z

∂t
= 〈ζ ′1 (ξ2 − L2ζ

′
2 − µζ ′2 +D2ζ

′
2) + ζ ′2 (ξ1 − L1ζ

′
1 − µζ ′1 +D1ζ

′
1)〉 , (3.139) eq:Zt_expand

where the subscripts refer to the quantities evaluated at point 1 or 2. There is an important
assumption about the interpretation of statistical average? I didn’t understand this point.
Include a small aside to clarify this. We can write the analogous for a stochastic 1D
differential equation

dX

dt
= ξ < ξ(t1)ξ(t2) >= δ(t1 − t2). (3.140)

The interpretation would be

d(X2
t ) = 2XtdWt(dWt)

2 (3.141)

where (dWt)
2 is some deterministic quantity dt, and since there is no statistical correlation

between dWt and dt
< d(Xt)

2 >= < 2XtdWt >︸ ︷︷ ︸
=0

dt (3.142)

Take a look at the appendix of [46] for a detailed explanation. Expanding (3.139) we can
write

∂Z

∂t
= Ξ− 2µZ + 〈ζ ′1D2ζ

′
2 + ζ ′2D1ζ

′
1 − ζ ′2L1ζ

′
1 − ζ ′1L2ζ

′
2〉, (3.143) eq:Zt_expand2

where 〈ζ ′1ξ2 + ζ ′2ξ1〉 = Ξ follows from the assumption of ergodicity and that the system
and forcing are uncorrelated (see appendix B.4 of [9]). Simplifying further we obtain

∂U

∂t
=

1

2
(∆−1

1 −∆−1
2 )

∂

∂x
Z(0, y, y, t)− µU +DU, (3.144) eq:NL-mean_close

along with
∂Z

∂t
+
[
∆−1

1 L1 −∆−1
2 L2

]∂Z
∂x

= Ξ− 2µZ + (D1 +D2)Z, (3.145)

which is a closed equation expressing ∂U/∂t and ∂Z/∂t in terms of its first U and second
cumulants Z. The main assumption used in the model, and that which we have used
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to close the model in obtaining (3.144) from (3.133), is that if there is an equivalence
between the x average in the initial equation

∂U

∂t
= v′ζ ′, (3.146)

and the statistical average

〈v′(x1, y1, t)ζ
′(x2, y2, t)〉

∣∣∣
x1=x2=0
y1=y2=y

, (3.147)

then we can rename it as

〈v′(x1, y1, t)ζ
′(x2, y2, t)〉 =

1

2

(
v′1ζ
′
2 + v′2ζ

′
1

)
. (3.148)

As shown in chapter 6 of [9], from this it follows that

v′ζ ′ =
1

2
(∆−1

1 −∆−1
2 )

∂

∂x
Z(0, y, y, t). (3.149)

This model is called CE2, which stands for closure at second order in the cumulant ex-
pansion. Authors [20] and [46] used the CE2 model to demonstrate the zonostrophic
instability. If we assume ψ(x, y1 − y2) homogeneous and that Z is non zero, it can be
shown that by adding a small perturbation to the flow U and to Z, under certain cir-
cumstances the flow is unstable to a sinusoidal mode in y which represents the growth of
jet-like disturbances.

A comparison of simulations run using the nonlinear model, quasilinear model, and
CE2 model is shown in figure 3.36. The state is initialised by some random initial con-
ditions and for all three models the flow self-organises into jets. However, there are
significant difference in the models.

Figure 3.36: Latitude-time plots showing the zonal mean of the zonal velocity field from
numerical integration of (a) a nonlinear model, (b) a quasilinear model, (c) a CE2 model.
Identical parameters were used in all three models in which we observe the spontaneous
formation of 3 eastward jets. Figure from [9] adapted from [8].

fig:NL-QL-CE

3.7.3.1 Jets variability
sec:JetVariability

After the jets are formed in the flow, they show different behaviours in terms of their
spatio-temporal evolution. The jet variability has been studied in detail by [9]. Three
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typical jet evolutions obtained from long-time simulations of the nonlinear model are
shown in figure 3.37. In the upper plot, a single jet forms and maintains an approxi-
mately constant amplitude over the entire duration of the simulation, except for small
fluctuations. The jet moves at different latitudes, without any preferential direction. This
behaviour is defined as randomly wandering. The middle plot shows a second behaviour,
in which jets are merge and split over time, the total number of jets changing throughout.
This is referred to as a merging and nucleating behaviour. In addition to these first two
jet behaviour, which are also found in observations and other studies, a third one has
been discovered by [9], here shown in figure 3.37(c). In this case, the jet is observed
to systematically move to lower or higher latitudes and sometimes reverse direction in a
jet migration. This last behaviour is deterministic and has a symmetry breaking in the
latitudinal coordinate. The nonlinear and quasilinear models can be compared by run-

Figure 3.37: Fundamental types of zonal jet variability regimes observed in the NL model.
(a) Randomly wandering behaviour, (b) merging and nucleating behaviour, and (c) mi-
grating behaviour. Figure from [9]

fig:jetsExample

ning simulations where the jet variability is changed by acting on the zonostrophy of the
system. The jet variability can be studied as a function of the β parameter by linearly
increasing the Rhines wavenumber, which is the inverse of the Rhines scale kRh = L−1

Rh.
The effect of increasing kRh is that the number of jets increases, as shown in figure 3.38
frames (a) and (c) for the nonlinear and quasilinear models respectively. The increase in
the number of jets is a complicated process subject to a strong variability. The nonlinear
model also shows an intermittent migrating behaviour of the jet which does not appear in
the quasilinear model, where only the merging and nucleation behaviour can be observed.
The zonal mean flow index, zmf(t), is a dimensionless quantity equal to the fraction of
the total kinetic energy that is distributed in the zonal mean zonal flow

zmf(t) =

〈
|ψ|

2
〉

〈|ψ|2〉
(3.150) eq:zmf

This parameter is shown in the bottom plot in figure 3.38. A more in depth analysis of
the spontaneous transitions and how they relate to zonostrophy has revealed a correlation
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Figure 3.38: Zonal jet variability regimes observed as the Rhines wavenumber is linearly
varied in time over the range 0 ≤ kRh ≤ 5. Figure (a) used the NL model while figure
(c) used the QL model. The inverse Rhines length scale kRh = L−1

Rh is linearly increased.
The top figures show a latitude-time plot of the time evolution of the zonal mean zonal
velocity field, while the bottom plot shows the corresponding evolution of the zmf index
(3.150). Figure and caption adapted from [9]

fig:jetsBeta

between the two. In figure 3.39, four simulations at different values of Rβ are compared.
What emerges is a negative correlation between transitions and Rβ, with more frequent
transitions occurring for the lowest values of the zonostrophy parameter.

Figure 3.39: The influence of the zonostrophy parameter Rβ on the frequency of regime
transitions. Latitude-time plots showing the zonal mean zonal velocity field are selected
for four simulations in which fast jet migration behaviour is observed. Figure and caption
adapted from [9]

fig:jetsZono

Another interesting feature, adding to the complexity of the jet variability, is hysteresis.
In runs where β is first increased and then decreased with all other parameters the same,
NL and QL simulations both show hysteresis, as can be seen in figure 3.40. Very different
jet evolutions are observed depending on the run. Similarly, hysteresis is also observed in
the CE2 model, as shown in figure 3.41. In this case, not only is the number of jets that
forms different when β is decreased, but their direction of migration is also reversed.

One question that arises is: is the variability always directly generated by the stochas-
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Figure 3.40: Hysteresis observed as the parameter β is linearly varied in time over the
range 0 ≤ β ≤ 8. Figures (a) and (b) used the NL model while figures (c) and (d) used
the QL model. β is linearly increased in figures (a) and (c) while in figures (b) and (d)
it is linearly decreased and the direction of time is reversed. Figure and caption adapted
from [9]

fig:jetshysteresis

Figure 3.41: Hysteresis observed as the parameter β is linearly varied in time over the
range 0 ≤ β ≤ 5 in the CE2 model. β is linearly increased in figure (a) and linearly
decreased in figure (b), where the direction of time is also reversed. Figure and caption
adapted from [9]

fig:jetshysteresisCE2

tic forcing or is the system behaving in a deterministic way? For the system considered
so far, the QL is explicitly stochastic whilst the CE2 model is deterministic. Therefore,
deterministic regimes and chaotic systems could be captured by the CE2 model. Ma-
chine learning and other data-driven techniques can help answering this question and
understanding the nature of the jet variability [36].

A test of what effect the stochastic forcing has on a system is conducted by comparing
two different set of simulations. In the first one, the forcing remains invariant but a small
perturbation is added to the system. The difference between the runs shows an exponential
divergence (see figure 3.42), as one could expect for the evolution of a chaotic system,
which would have a divergence in the Lyapunov exponent. A second set of runs, where
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Figure 3.42: Comparison between two runs that only differ in their initial conditions.
The color plots on the left show the mean flow, averaged over 5 runs. On the right the
mean difference between runs is shown in the solid blue line, with the standard deviation
envelope shown in lighter blue. Figure and caption adapted from [43]

fig:stoc-invariant

the flow is unperturbed but the forcing is different, are shown in figure 3.43. Differently
from the previous case, the time evolution assumes a random-walk behaviour and there
is a growth in the error.
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Figure 3.43: The color plots on the left show the mean flow averaged over the 5 runs. On
the right we see the mean difference between runs shown in the solid blue line, with the
standard deviation envelope shown in lighter blue. In this case, at time t = 0 the runs
were initialised with a different random forcing, all other initial conditions remained the
same. The green dashed line shows the gradient, determined via regression to represent
the diffusion rate, characterised by the diffusion constant. Figure and caption adapted
from [43]

fig:stoc-variant

3.8 Moist dynamics
sec:moist

The topics covered so far, discussing the basics of the atmosphere and ocean dynamics are
based on dry dynamical theories that do not consider moist processes. When water vapour
in the atmosphere condenses, it releases heat, which impacts the circulation, especially in
tropical regions. Moreover, condensation leads to the formation of clouds and successively
to rain, both phenomena affecting the weather and climate evolution. Yet, most of the
traditional geophysical fluid dynamics do not treat moist dynamics. It is becoming more
and more essential to develop ‘wet’ dynamics, since the water vapour percentage in the
atmosphere increases with global warming, and therefore it will potentially change the
circulation.

In this chapter, we will introduce the topic of moist dynamics, discussing the Madden-
Julian Oscillation as the manifestation of a ‘moisture’ mode [38]. Different convection
models are discussed, and the basic ideas for developing an analytical model are intro-
duced. A recent review article on the topic can be found in [51].

3.8.1 The Madden-Julian oscillation

The Madden-Julian oscillation (MJO) is a global scale disturbance related to the large-
scale convective fluctuations and associated vertically overturning circulation anomalies
with a periodicity of 30-60 days [26]. The MJO impacts the weather and climate, playing
an important role in the Indian Ocean dynamics. Therefore, an accurate description of
this phenomenon is necessary to improve the models and add predictability to the weather
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forecasts.
Figure 3.44 show a time-longitude plot of the precipitations in the tropics, where the

effects of MJO are most apparent. Several time-space structures are recognizable in the
plot with different phase propagation directions. An interplay of different scale phenom-
ena is well visible in the figure. The MJO globally moves eastward with the large-scale
convective envelope within which smaller-scale disturbances are observed to move in both
directions. For example, Kelvin waves (propagating eastward) are superposed to inertia-
gravity waves and Rossby waves that propagate in the opposite direction (westward) [38].

Figure 3.44: Time-longitude evolution of precipitation based on the NASA Global Pre-
cipitation Measurement. Figure and caption adapted from [26]

fig:precipitations

In section 3.4, we have analysed the shallow water equations and the family of waves
that can be described by the equations. We now consider the equatorial-β plane, where
f = βy and f0 = 0 is the equator. In this system, equatorially trapped solutions, which
decay away from the equator exist and can be written as

√
ghe
β

(
ω2

ghe
− k2 − k

ω
β

)
= 2n+ 1, n = 0, 1, 2, ... (3.151) eq:equatoredispersion

which has three classes of solutions corresponding to eastward and westward propa-
gating inertia-gravity waves plus equatorial Rossby waves [28]. The dispersion rela-
tion for the three types of waves is plotted in figure 3.45 for adimensional frequency
ω∗ = ω/(β

√
ghe)

1/2 and wavenumber k∗ = k(
√
ghe/β)1/2. The solution for n = 0 is a par-

ticular case, for which the waves behave as Rossby waves for negative wavenumber and as
inertia-gravity waves for positive wavenumbers. Such wave is called mixed Rossby-gravity.
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The equatorial Kelvin wave is an analogous of the costally trapped Kelvin wave we have
previously seen and it only propagates towards the East.

Figure 3.45: Dispersion curves for equatorial waves as a function of the nondimensional
frequency, ω∗, and nondimensional zonal wave number, k∗. Figure and caption adapted
from [28]

fig:equatorial-dispersion

There is a correspondence between the theoretical dispersion relation (3.151) and
observations in the cloudiness disturbances, shown in figure 3.46. The match is obtained
by setting the values of the phase speed c. The waves appear to be slower than what is
predicted by the dry dynamics, i.e. the dynamics where moisture effects are neglected.
The motion of gravity waves in the tropics is associated very strongly with precipitations,
which provides heating, and therefore one needs to modify the equations to take into
account the effect of moisture. The left plot in figure 3.46 shows a peak in the bottom
right sector, corresponding to the MJO. 20-30 years ago, someone put forward the idea
that the MJO could be explained as a slow Kelvin mode due to the effect of moisture.
However, this hypothesis has been discarded, and a theory explaining MJO is still lacking.

3.8.2 Moist shallow water equations
sec:moistSW

Can we include the moisture in the equatorial β−plane shallow water equations to make
a link between the dry equations given in section 3.4 and the hydrology cycle?

A simple approach consists in rewriting the shallow water equations as

∂u

∂t
+ u · ∇u+ βyez × u = −g∇η, (3.152)

∂η

∂t
+∇ · (uη) = S(r, η), (3.153)

∂r

∂t
+∇ · (ur) = R(r, η), (3.154)
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Figure 3.46: Wave number–frequency power spectrum of the (a) symmetric and (b) anti-
symmetric component of tropical cloudiness. Figure and caption adapted from [28]

fig:clouds-dispersion

where there is an additional moisture variable r. S(r, η) includes the latent and radiative
heating, and R(r, η) precipitations combined with evaporation. In this way, we have built
a simple system with which it is possible to investigate moist effects. From the extra
equation a new mode should arise, a moisture mode, which manifests in the atmosphere
as the MJO.

Figure 3.47: Sketch of homogeneous vs. aggregate convection.
fig:aggregate
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3.8.3 Numerical simulations including convection

Simulations including convection are usually done over a homogeneous domain in a peri-
odic box, where convection is happening more or less randomly everywhere maintaining
a statistically equilibrium. As it can be seen in the sketch in figure 3.47, in this situation
there is a rise where clouds are situated and then sinking motions outside the clouds.
Under some circumstances, aggregation can happen so that convection becomes more or-
ganised and localised in some specific regions. In such regions there will be a large-scale
upwelling motions and subsiding in other regions (see figure 3.47). The state-of-the-
art models can resolve (or better represent) convection. They have a spatial resolution
of about 2-3 km and have turbulent parametrization and can give some representation
about the convection scale flow.

Figure 3.48: Daily mean (a),(b) precipitable water (PW) and (c),(d) outgoing longwave
radiation (OLR) after 60 days in two simulations with the same resolution dx = 2km but
different domain sizes L = (a),(c) 198 and (b),(d) 510km. Figure and caption taken from
[32]

fig:model-convection

An example of such models is shown in figure 3.49 taken from [32]. On a rather
small domain (plots on the left) the moisture stays homogeneous, whilst moisture self-
aggregates when the domain is large enough resulting in localised areas where convection
is very strong and precipitations occur. A theory proposed is that aggregation could be
related to the MJO.

An extremely simple mathematical model for aggregation was proposed in [10]. In
this model, the authors assume that the organisation can be explained on the basis of the
moisture field alone. The equations they derived, similar to the Allen-Cahn equation, is
the following

∂r

∂t
− k∇2r = R(r) and

∫
Rdxdy = R0, (3.155)
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with k the eddy diffusivity. It is a bistable system with two possible stable states and an
unstable state in between.

Figure 3.49: Snapshots of the horizontal distribution of the integrated moisture content
normalized by its saturation value, daily for days 1 to 4, and at days 8 and 50, for a
representative simulation. Figure and caption taken from [10]

fig:model-convection

The resulting moisture content is shown in figure 3.49 taken from [10]. Three different
stages can be recognised at successive times. A diffusive stage, where the moisture field
becomes smooth after being initialised with random noise. A coarsening stage, where
small-scale merges creating larger scale-features. A final droplet stage, in which we have
the aggregation in some regions.

A limitation of this model is that it does not include any dynamical interaction.

The discussion about moist dynamics given in this section, far from being exhaustive,
aims to provide the reader with some basic knowledge about a fairly unexplored area of
geophysical fluid dynamics. The effects of moisture on the dynamics are general circulation
are much more poorly understood than the thermodynamic aspects and are therefore an
area where new research can be developed.



154 Chapter 3. Peter Haynes’ lecture notes



Chapter 4
Frédéric Rousset’s lecture notes

These lecture notes provide a summary of the Atmospheric and Oceanic Fluid Dynamics
PDEs course given by Frédéric Rousset at the Mathematical Fluid Dynamics Summer
School in Cargèse, 2021.

4.1 Ekman layers in rotating fluids

4.1.1 Introduction

This section will aim to discuss some simplified models in geophysical fluids. The final
goal will be to perform some rigorous analysis on these models, and try to illustrate some
mathematical techniques that we may use to study them. When considering geophysical
fluids, there are often two important phenomena that we must consider. These are waves
and, when considering problems with some small viscosity, boundary layers. We will start
by looking at boundary layers.

We will study the Ekman layer in rotating fluids to begin. Let us consider the incom-
pressible Navier-Stokes equations in a rotating system with isentropic viscosity, namely{

∂tu+ (u · ∇)u+ 1
Ro
e× u+∇p = E

Ro
∆u

∇ · u = 0,
(4.1) eqn:NS-1

on some spatial domain Ω, for positive time, where Ro is the Rossby number and E is
the Ekman number. Both are non-dimensional. The vector e = (0, 0, 1)T represents the
Coriolis force. We suppose that Ro and E/Ro are small, so we will denote ε = Ro and
consider E/Ro = βε with β ∼ 1 a constant. Note that at leading order, the gradient of
the pressure will be of order 1/ε, so we will pull this factor out for ease of notation. These
scaled equations come from a nondimensionalization of the original equations, using the
assumption that the effects of rotation will have a leading order effect on the flow. There
isn’t a natural scaling for pressure so its scale is chosen to balance the leading order terms.
Analogously, in the Navier-Stokes equations without rotation, pressure is often chosen to
scale with the advective term. After simplification, the equation becomes

∂tu
ε + (uε · ∇)uε +

1

ε
e× uε +

1

ε
∇pε = βε∆uε. (4.2)
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Remark 15. In geophysical fluids it is sometimes more natural to take a different form of
the viscosity by modelling turbulent effects. A variant of these equations is thus obtained
by replacing βε∆u by the turbulent viscous tensor ε∂2

zu+ νH∆yu, where νH ∼ 1.

We will denote the coordinates x ∈ Ω where x = (y, z) with y = (y1, y2) and z,
respectively its horizontal and vertical components. An example of a possible, and one
which we will consider here, is Ω = R2 × (0, 1). Another domain that we will study is
Ω = T2 × (0, 1) where T denotes periodic boundary conditions in the y variable. We
impose the no-slip boundary condition u|z=0,1 = 0.

Let us consider the behaviour of uε as ε goes to 0. From the general PDEs perspective,
there are two ways to tackle this kind of problem:

• Using compactness arguments from uniform estimates; this can be quite arduous for
non linear PDEs as the estimates that you can obtain are often quite weak, leading
to weak convergence from which it is difficult to obtain the limit.

• Justifying a multi-scale asymptotic expansion.

The aim of this section will be to focus on the second method, in the case where we take
into account two scales for the space variable.

Remark 16. Notice that from (4.1) we can obtain the following energy estimate

1

2

d

dt
‖uε‖2

L2 + βε‖∇uε‖2
L2 = 0, (4.3) eqn:energy_est

which translates the dissipation of physical energy in this case.

Formal proof of remark. By taking the dot product of (4.3) with uε and integrating over
Ω, one has∫

Ω

∂tu
ε · uε + (uε · ∇)uε · uε − βε∆uε · uε +

1

ε
e× uε · uε +

1

ε
∇pε · uε = 0.

Considering individual terms within this equation, we have∫
Ω

∂tu
ε · uε =

1

2

d

dt

∫
Ω

|uε|2.

Most of the other terms vanish. Integration by parts along with both the given boundary
condition and the incompressibility of uε implies∫

Ω

(uε · ∇)uε · uε = −
∫

Ω

∇ · uε |u
ε|2

2
= 0.

For the same reasons, one has∫
Ω

∇pε · uε = −
∫

Ω

pε∇ · uε = 0.

The Coriolis term automatically vanishes since

e× uε · uε = 0.

Finally, an integration by parts provides∫
Ω

∆uε · uε = −
∫

Ω

|∇uε|2.
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Formally, we thus have the energy conservation property, which we can use prove global
existence of weak solutions to the Navier-Stokes equation. Let us recall the following
famous result.

Theorem 4.1.1 (Leray). For any ε > 0 and uε(0) ∈ L2(Ω) with free divergence, there
exists at least one weak solution uε to the incompressible Navier-Stokes equation in a
rotating system such that

‖uε(t)‖2
L2 + 2βε

∫ t

0

‖∇uε(s)‖2
L2 ds ≤ ‖uε(0)‖2

L2 .

Remark 17. Let us emphasize that the result does not include uniqueness. The notion
of weak solution must at least ensure that the latter estimate is well defined. Here to be a
weak solution means that

uε ∈ L∞(R+;L2(Ω)) ∩ L2(R+;H1(Ω)).

The first part is referring to how the solution remains in L2 and is bounded by the initial
condition, and the second that the gradient exists and its square is integrable with respect
to space and time. Notice that results for strong solutions also hold, but would imply a
finite time of existence depending on ε. Therefore to use this result would require to prove
that there exists an interval of time independent of ε in order to perform our study. In
fact, the way to obtain a stronger solution is to try to justify the asymptotic expansion as
mentioned above. Instead, we will describe the limit of any Leray weak solution.

If we assume that uε → u0 as ε → 0, in a sufficiently strong sense, then u0 should
solve the following system of equations, know as geostrophic balance,

e× u0 +∇p0 = 0

∇ · u0 = 0

u0
3|z=0,1 = 0,

where u = (u1, u2, u3)T, with eventual extra indices. Explicitly, we may write the first
equation as −u0

2

u0
1

0

+

∂1p
0

∂2p
0

∂zp
0

 = 0. (4.4) eq:tp

Since ∂zp0 = 0, the pressure is independent of z; hence by (4.4), u0
1 and u0

2 are also
independent of z. Furthermore, looking at (4.4), we observe that ∇y · u0

y = 0. Since u0

is divergence free, we obtain that u0
3 is independent of z too. By our choice of boundary

conditions, necessarily there is u0
3 = 0, and so we have shown that the velocity field is

indeed of the form

u0(t,x) =

u0
1(t,y)
u0

2(t,y)
0

 .

The Dirichlet boundary condition cannot be satisfied by such a limit. Therefore, there
must be a boundary layer.
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4.1.2 Multiscale expansion with boundary layers

A boundary layer is a region in the domain which is governed by different equations to the
interior region, in order to satisfy given boundary conditions. These regions are typically
thin in the direction perpendicular to the boundary. Drawing upon another physical
situation as an example, the flow of air past an aerofoil/plane wing is fast (hundreds of
kilometres per hour) but must reduce to zero relative to the boundary of the aerofoil, and
this reduction is achieved close to the boundary. In our case, the flow in the interior region
as already stated above is close to geostrophic balance, and we expect diffusive effects to be
strong close to the boundary. The following method of solution consists of expressing the
solution as an asymptotic expansion where each successive term is small (O(ε)) compared
to the previous term, and then further split into components which satisfy the interior and
boundary layer equations. The idea behind an asymptotic expansion is that substitution
into the governing equations and looking at terms of the same order in ε yields simpler
equations for each term in the expansion, which when put back together give a solution
which will have a small error.

Given the dependence of the solution on ε, let us call u = uε. In the following we
generically denote, with possible indices,

U =

(
u
p

)
.

Consider the following two spatial scales expansion: let us write the approximate solution
U app with some corrector C:

U app =
M∑
k=0

εkU k

(
t,x,

z

ε
,
1− z
ε

)
+ C,

where we decompose the functions as interior and boundary layer parts, as follows

uk
(
t,x,

z

ε
,
1− z
ε

)
= uk,int(t,x) + uk,b,0

(
t,y,

z

ε

)
+ uk,b,1

(
t,y,

1− z
ε

)
.

The term C is a corrector, the properties of which will be specified further in the proof
of Theorem 4.1.2. The coordinates z/ε and (1 − z)/ε will be henceforth labeled as the
inner variable Z, which takes the value of 0 at each of the boundaries. The interior
and boundary layer solutions uk,int,uk,b,i must satisfy certain boundary and continuity
conditions in order to provide us with a reasonable solution to our system of equations
throughout the domain. To ensure the boundary conditions are satisfied, we require that

uk,int(t,y, i) + uk,b,i(t,y, 0) = 0,

and that the boundary layer functions are not felt at infinity,

∀α,β, sup
t∈[0,T ]

∥∥∂αt ∂βyuk,b,i(t, ·, Z)
∥∥
L2 . e−c0Z .

We also require that these functions have sufficiently many derivatives so that an error of
O(εM−1) can be achieved, that is to say

∀n, uk,int,uk,b,i ∈ Hn(Ω),
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Let us define

NSε(U) = ∂tu+ (u · ∇)u+
1

ε
∇p+

1

ε
e× u− βε∆u.

We will prove the following result.

thm:app-soln-exist Theorem 4.1.2. For any M ∈ N∗ and s > 0 there exists such an element U app satisfying NSε(U app) =

(
Rε

0

)
uapp|z=0,1 = 0,

with
‖Rε‖Hs ≤ εM−s−3/2.

Proof. In what follows we generically denote, with a possible extra index,

U =

U int

Ub,0

Ub,1

 .

Let us consider the following iterative scheme, for 1 ≤ k ≤M − 1,{
LU0 = 0

LUk+1 = F ((Uj)j≤k) ,

where the operator L is defined as

LU =

(
LintU int

Lb,iUb,i

)
with

LintU int =

(
e× uint +∇pint

∇ · uint

)
, Lb,iUb,i =


−ub,i

2 + ∂1p
b,i − ∂2

Zu
b,i
1

ub,i
1 + ∂2p

b,i − ∂2
Zu

b,i
2

±∂Zpb,i

±∂Zub,i
3

 ,

on a set of functions satisfying the boundary compatibility conditions

uint|z=i + ub,i|Z=0 = 0. (4.5) eq:bcond

The scheme defined here comes from factorizing the equation by the powers of ε in the
interior and boundary layers parts respectively, and provides in particular the map F
which is not explicited here. Specifically, given that in the boundary layer the vertical
scale of interest is order Z = z/ε, the diffusion is the same magnitude as the Coriolis and
pressure terms here. This scheme requires in particular F ((Uj)j≤k) to be in the range of
L. The key step to justifying the iteration is therefore to understand the kernel and the
image of this operator.
• Initially, let us look at the kernel of L satisfying the boundary compatibility condi-

tions, meaning the set of (U int,Ub,i) satisfying (4.5) and such that

LintU int = 0, Lb,iUb,i = 0.
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The first equality means that the interior flow satisfies the geostrophic balance and the
divergence free condition, which we know to imply that the pressure is independent of the z
coordinate. The second relation gives information for the boundary layer functions; using
the third and fourth components ofLb,i, along with the decay at infinity of the velocity and
pressure fields, we have that ub,i

3 = 0 and pb,i = 0. To consider the boundary condition,
we impose that there must be no vertical interior velocity, meaning that uint

3 = 0.
Following this, along with the boundary conditions, we find that the first and second

components of Lb,i are, along with the boundary conditions,

∂2
Zu

b,i
y = (ub,i

y )
⊥ with ub,i

y |Z=0 = −uint
y (t,y).

This ordinary differential equation (ODE) admits the following solution

ub,i
y (t,y, Z) = −e−Z/

√
2
(
uint
y (t,y) cos

(
Z/
√

2
)

+ (uint
y )⊥(t,y) sin

(
Z/
√

2
))

, (4.6) eq:ekman

which is the Ekman layer.
• Now let us describe the image of L. To do requires us to solve

LintU int = F int(t,y, z),

Lb,iUb,i = F b,i(t,y, Z),

with respect to the boundary conditions (4.5), where F int is given in Hs(Ω) and F b,i is
exponentially decaying with respect to Z. We decompose the velocity and divergence
parts of the force terms as follows

F int = (F int
u , F int

d )T ∈ R3 × R, F b,i = (F b,i
y , F b,i

Z , F b,i
d )T ∈ R2 × R× R.

The system is written, for the interior part,{
e× uint +∇pint = F int

u

∇ · uint = F int
d ,

and for the boundary layer part
(ub,i
y )⊥ +∇ypb,i − ∂2

Zu
b,i
y = F b,i

y

±∂Zpb,i = F b,i
Z

±∂Zub,i
Z = F b,i

d .

The latter equalities impose

pb,i = ∓
∫ +∞

Z

F b,i
Z dZ ′, ub,i

Z = −
∫ +∞

Z

F b,i
d dZ ′,

and the relation (4.5) implies

uint
z |z=i =

∫ +∞

0

F b,i
d dZ

For the interior part, the pressure satisfies

∂zp
int =

(
F int
u

)
z
, (4.7)
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which implies that pint is of the form f(z) + p̃int(t,y). Hence we have(
uint
y

)⊥
=
(
F int
u

)
y
−∇yp̃int,

the curl of which provides

∂1u
int
1 + ∂2u

int
2 =

(
∂1F

int
u

)
2
−
(
∂2F

int
u

)
1
.

Combined with ∇ · uint = F int
d , one finds

∂zu
int
z = −

[(
∂1F

int
u

)
2
−
(
∂2F

int
u

)
1

]
+ F int

d .

From the first equation on the boundary part, one can determine
(
ub,i
y

)⊥ by solving
an ODE with a decaying part, and matching the tangential boundary condition

uint
z |z=0 =

∫ +∞

0

F b,0
d dZ, uint

z |z=1 = −
∫ +∞

0

F b,1
d dZ,

from which emerges the constraint∫ 1

0

F int
d −

∫ 1

0

(
∂1F

int
u

)
2
−
(
∂2F

int
u

)
1

=

∫ +∞

0

F b,0
d +

∫ +∞

0

F b,1
d . (4.8) eq:constraint

• Let us compute the terms of the scheme. From the preliminaries we now know that
U0 must be of the form

u0,int =

(
u0,int
y (t,y)

0

)
,

and that u0,b is given by the Ekman layer (4.6). Let us set

F(U0) :=


F int
u

F int
d

F b,i
y

F b,i
Z

F b,i
d

 =


∂tu

0,int + (u0,int · ∇)u0,int − νH∆yu
0,int

0
∂tu

0,b,i
y +

((
u0,int
y + u0,b,i

y

)
· ∇y

)
u0,b,i +

(
u0,b,i
y · ∇y

) (
u0,int + u0,b,i

)
0

∓∇y · u0,b,i

 .

Remark 18. Let us take a look at the expansion of the product of the interior and
boundary parts of the maps we consider, to justify the expression of F b,i

y . For generic
f = f int + f b and g = gint + gb, with Taylor decomposition head terms of the following
form

f int(t,y, z) = f int(t,y, 0) + zf̃ int(t,y),

the products of the form zf̃ intgb are equivalent to εZe−Z/
√

2, so that the expansion of the
product of f and g is

f intgint + f int|z=0 g
b + fbgint|z=0︸ ︷︷ ︸

boundary layer part

+fbgb + higher order terms.

The boundary layer part of this multiplication is dominated by the the boundary layer
function multiplied by the interior function evaluated at the boundary. This means that
the terms coming from the z-derivatives, which are order 1/ε, don’t appear above due to
multiplication by the vertical velocity at the boundary which is 0.
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By condition (4.8) on the range of L and taking the 2D curl of F int
u as follows∫ 1

0

∇y × (∂tu
0,int
y + (u0,int

y · ∇y)u0,int) = −
∫ +∞

0

∇y · (u0,b,0
y −+ u0,b,1

y ) dZ

provides
∂tω

0,int + (u0,int
y · ∇y)ω0,int = −

√
2ω0,int,

where ω0,int is the 2D curl of u0,int
y defined as

ω0,int = ∇y × u0,int
y = ∂1u

0,int
2 − ∂2u

0,int
1 ,

and the boundary layer terms are

V E(t,y, Z) := u0,b,i
y (t,y, Z) = e−Z/

√
2
(
u0,int
y (t,y) cos

(
Z/
√

2
)

+
(
u0,int
y (t,y)

)⊥
sin
(
Z/
√

2
))

.

[picture of Ekman spiral solution here]

Now passing to the velocity formulation shows that u0,int must solve{
∂tu

0,int
y +

(
u0,int
y · ∇y

)
u0,int
y +

√
2u0,int

y +∇yp0,int = 0

∇y · u0,int
y = 0.

(4.9) eq:dampedeuler

which is a 2D Euler equation with damping, related to the Ekman pumping phenomenon
[?, ref?]. We admit here that this equation is well-posed, so that U1 is determined up to
the choice of an element of the kernel of L.

For the next orders, Uk are also determined up to elements of KerL, and since LUk =
F(Uj : 0 ≤ j ≤ k− 1), uk,int also solves a linearized version of the damped Euler equation
(4.9) about u0,int

y .
The last step is the construction of the corrector C. Let us denote

V app :=
M∑
k=0

εkU k,

which satisfies V app|z=0,1 = O
(
e−1/ε

)
and ∇·V app = Rε

d with ‖Rε
d‖Hs = O

(
εM−1−s). We

(admit that) we can choose C such that{
∇ · C = −Rε

d

C|z=0,1 = O
(
e−1/ε

)

From a physical oceanography perspective the Ekman layer comes from wind stress
which is forcing the ocean surface, rather than the requirement of zero velocity at the
boundary which was used here. Also, the Ekman pumping alluded to above is the mech-
anism by which wind stress forcing causes a downward (upward) flow of water due to
convergence (divergence) of surface waters.

Now we can wonder in which sense uε does converge to uapp. The following results
provides an answer.
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Theorem 4.1.3 (Grenier & Masmoudi [??]). Let T > 0. Set

R0 := sup
t∈[0,T ]
y∈T2

2

∫ +∞

0

Z∂ZV
E (t,y, Z) dZ,

with V E the Ekman layer defined in (4.6).
If

R0 < 0 (4.10) eq:condR0

and if
‖uε0 − u0,int|t=0‖L2 −→

ε→0
0, (4.11) eq:convhyp

then
sup
[0,T ]

‖uε − u0,int‖L2 −→
ε→0

0.

Remark 19. • As a consequence,

sup
[0,T ]

‖uε − u0,int‖L2 −→
ε→∞

0.

That is to say that uε converges to the solution of the damped incompressible 2D
Euler equation.

• We can prove more. In fact

‖uε − uapp‖Hs ≤ εM−3/2, M ≥ 2,

if we ask condition (4.11) to hold in Hs spaces. In particular it follows uniform
convergence of uε, by Sobolev embedding for s > 1/2.

• The condition (4.10) is a well-prepared data assumption. If uint
0 satisfies (4.10) then

it is satisfied for small times.

• If we take the anisotropic viscosity ε∂2
Z + νH∆y then this latter condition is auto-

matically satisfied for small times and is not required, see Remark 20.

Proof. Set v = uε − uapp. Then v solves the system,
∂tv + uapp · ∇v + v · ∇uapp + v · ∇v +∇p = ε∆v +Rε

∇ · v = 0

v|z=0,1 = 0,

for Rε that satisfies sup[0,T ] ‖Rε‖L2 → 0 as ε → 0. We then make the following energy
estimate, again by dot multiplying with v and integrating over Ω. Firstly we obtain,

d

dt

1

2

∫
Ω

|v|2 dx+

∫
Ω

(uapp · ∇v) · v + (v · ∇v) · v +∇p · v − ε∆v · v dx

=

∫
Ω

Rε · v − (v · ∇uapp) · v dx, (4.12) eqn:GM-2
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for which all terms simplify one way or another, except the remainder term that we bound
using Cauchy-Schwarz and Young inequality, namely ab ≤ (a2 + b2)/2, so that we have,∫

Ω

Rε · v dx ≤ 1

2
(‖Rε‖2

L2 + ‖v‖2
L2).

The final term of (4.12) requires use of the form of uapp. If we expand this then we have
separate contributions from the interior and boundary layer parts. Treating the boundary
layer parts first, we have that the magnitude of the gradient in these regions is dominated
by the vertical derivative. For the boundary at z = 0,∫

Ω

(v · ∇u0,b,0) · v dx ∼
∣∣∣∣1ε
∫

Ω

v3∂Zu
0,b,0

(
t,y,

z

ε

)
· v dx

∣∣∣∣ , (4.13) eqn:boundaryTerm

and similarly for the boundary layer at z = 1. Now we notice that we can use Cauchy-
Schwarz again, and that v|z=0 = 0, to obtain,

|v(t,y, z)| =
∣∣∣∣∫ z

0

∂zv(t,y, w) dw

∣∣∣∣
≤ z1/2

(∫ z

0

|∂zv(t,y, w)|2 dw

)1/2

,

which can then be substituted into the previous equation,∣∣∣∣1ε
∫

Ω

v3∂Zu
0,b,0

(
t,y,

z

ε

)
· v dx

∣∣∣∣ ≤ 1

ε

∫
Ω

|v|2
∣∣∣∂Zu0,b,0

(
t,y,

z

ε

)∣∣∣ dx

≤ 1

ε

∫
Ω

z

(∫ z

0

|∂zv(t,y, w)|2 dw

) ∣∣∣∂Zu0,b,0
(
t,y,

z

ε

)∣∣∣ dx

≤ sup
t∈[0,T ]
y∈T2

(∫ 1

0

z

ε

∣∣∣∂Zu0,b,0
(
t,y,

z

ε

)∣∣∣ dz

)∫
Ω

|∂zv|2 dx

≤ ε sup
t∈[0,T ]
y∈T2

(∫ ∞
0

Z|∂Zu0,b,0(t,y, Z)| dZ
)∫

Ω

|∂zv|2 dx

≤ εR0

2
‖∂zv‖2

L2 .

We also get the same contribution from the other boundary layer. Now returning to the
contribution from the interior part, since u0,int is independent of ε we can find a constant
C, dependent on the supremum of gradients of u0,int (so also independent of ε) such that,∫

Ω

(v · ∇u0,int) · v dx ≤ C‖v‖2
L2 .

Putting this all together and using the assumption that R0 < 1 we have,

d

dt

1

2
‖v‖2

L2 + ε(1−R0)‖∇v‖2
L2 ≤

1

2

(
‖Rε‖2

L2 + ‖v‖2
L2

)
+ C‖v‖2

L2

d

dt
‖v‖2

L2 ≤ ‖Rε‖2
L2 +D‖v‖2

L2
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where D = 2C + 1. We can now use Grönwall’s inequality to give,

‖v(t)‖2
L2 ≤ ‖v|t=0‖2

L2eDt + eDt
∫ t

0

‖Rε‖2
L2 ds.

Since both ‖v|t=0‖L2 and ‖Rε‖L2 vanish as ε goes to zero, this concludes the proof.

rk:R0 Remark 20. In the case of anisotropic vorticity, ε∂2
z+νH∆y, we firstly replace the energy

dissipation term ε
∫

Ω
|∇v|2 dx by ε

∫
Ω
|∂Zv|2 dx+ νH

∫
Ω
|∇yv|2 dx. Also, going on from

equation (4.13) we can try to make use of the anisotropy by noticing that u0,b,0 has no
vertical component, so the dot product with v leaves behind only vy. In particular, we
have that this equation is instead less than or equal to

1

ε

∫
Ω

z

(∫ z

0

|∂zv3(t,y, w)|2 dw

)1/2(∫ z

0

|∂zvy(t,y, w)|2 dw

)1/2 ∣∣∣∂Zu0,b,0
(
t,y,

z

ε

)∣∣∣ dx

≤ ε
R0

2
‖∂zv3‖L2‖∂zvy‖L2

≤ ε
R0

2
‖∇yv‖L2‖∂zv‖L2

≤ ε

4
‖∂zv‖2

L2 +
C

2
R2

0ε‖∇yv‖2
L2 .

Finally taking into account the second boundary layer too we see that a similar energy es-
timate can be made for the anisotropic case without the need for R0 < 1, instead requiring
that νH − CR2

0ε > 0, which is true for ε sufficiently small.

4.2 Sizes of boundary layers

The following section will address the question of how to compute the sizes of boundary
layers in different geophysical fluids, and will give us a general recipe to do so. In geo-
physical fluids, these boundary layers will often come from the linear part of the equation.

Linear systems with boundary and initial conditions take the form:
Lε(∂t, ∂y, ∂z)U = F for z > 0,

B(∂t, ∂y, ∂z)U|z=0 = g,

U|t=0 = U0.

We note the following general facts about such systems.

• Before considering the dependence on ε, let us suppose that is fixed and so we can
ignore it for now. This allows us to consider minimal well-posedness assumptions
for such PDEs.

• The Cauchy problem satisfies the system{
L(∂t, ∂y, ∂z)U = F for t > 0,y ∈ R2, z ∈ R,

U|t=0 = U0.
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For the Cauchy case, we may look for a solution which takes the form of a linear super-
position of plane waves. Plane waves take the form U = e(γt+iτt)eiξ·x where x = (y, z).
We can find one non-zero solution of this form, which satisfies

D(γ + iτ, iξ) := detL∗(γ + iτ, iξ) = 0. (4.14)

For well-posedness, this must also satisfy the assumptions that{
D(γ + iτ, iξ) = 0 =⇒ γ = 0,

γ ≥ 0.
(4.15) eqn:LEwellposedcond

Usually, there is also homogeneity, such that if D(γ0 + iτ0, iξ0) = 0 for γ0 > 0 then
D(λα(γ0 + iτ0), iλβξ0) = λD(γ0 + iτ0, iξ0) = 0 =⇒ ill-posed.

We can reduce the linear system of equations to{
LU = F for z > 0, t ∈ R,

BU|z=0 = g,

such that F, g|t<0 = 0, which will allow us to take Fourier transforms. We also want
U|t<0 = 0. We take a Laplace transform in time and a Fourier transform in space, noting
that the operators L,B, F, g will now denote the transforms, the system becomes an ODE
in z: {

L(γ + iτ, iη, ∂z)v = F,

B(γ + iτ, iη, ∂z)v|z=0 = g.

Assuming that L is not of first order in z, we transform into{
∂zV = G(γ + iτ, iη)V + F,

ΓV|z=0 = ð.

lem:eigenvalues Lemma 4.2.1. Assuming (4.15), G for γ > 0 has no eigenvalues on the imaginary axis.

Proof. If iµ is an eigenvalue of G then detL(γ + iτ, iη, iµ) = 0 =⇒ γ = 0 by (4.15).

Remark 21. The number of positive (N+) and negative (N−) eigenvalues is independent
of the parameters γ > 0, τ and η.

A consequence of Lemma 4.2.1 is that ∃ Π± projectors such that GΠ±(γ, τ, η) = Π±G.
Call G± = Π±G and decompose V such that V = V+ + V− where V+ ∈ Im (Π+) and
V− ∈ Im (Π−). Now our system of equations may be written in the form

∂zV+ = G+V+ + Π+ + F z > 0,

∂zV− = G−V− + Π+F z > 0,

Γ(V+ + V−)|z=0 = g

We have now obtained a system of constant coefficient linear ODEs, so we can solve
using the exponential of the matrices, and the fact that G± has only eigenvalues of positive
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(negative) real part. That is to say, G+ → C+ := σ(G+) ⊂ {Reλ > 0} and
G− → C− := σ(G−) ⊂ {Reλ < 0}. We find that

Π+ =
∫
∂C+

(λ−G)−1 dλ,

V+(z) = −
∫∞
z

e(z−y)G+Π+F(y)dy,

V−(z) = e−zG−v0 +
∫ z

0
e(z−y)G−Π−F(y)dy,

with v0 currently free but required to satisfy the necessary condition that
Γv0 = g + Γ

∫∞
0

e−yG+F+(y)dy, in order to satisfy the boundary condition. We note the
following facts and consequences:

• Γ : Im Π− → Im Γ is an isomorphism,

• rank Γ = N ,

• ∆(γ, τ, η) = det (Γ/Im Π−) 6= 0 (Lopatinski condition).

We will now study three short examples.

• The heat equation. For this example, the system of equations is written{
∂tu−∆u = F,

u|z=0 = 0.

Taking the Laplace transform:{
(γ + iz + |η|2)u− ∂2

zu = F,

u|z=0 = 0.

We may then rewrite this as
∂zV = GV +

(
0
F

)
G =

(
0 1

γ + iτ + |η|2 0

)
,

ΓV =

(
v1

0

)
= 0,

where V =

(
v1

v2

)
=

(
u
dzu

)
.

We find eigenvalues µ = ±
√
γ + |η|2 + iτ which are not on the imaginary axis.

N− = 1 and the Lopatinski condition holds ⇐⇒ ΓR− 6= 0, where R− is the
eigenvector associated to the negative eigenvalue.

• General hyperbolic systems. For general hyperbolic systems,

∂zu+
d∑

k=1

Ak
∂U

∂xk
= F, for t = xd > 0,

A(ξ) =
d∑

k=1

ξkAk has real eigenvalues. If Ad is invertible, it is an exercise to show

that N− is equal to the number of positive eigenvalues of Ad.
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• Including ε. Suppose that we now reintroduce our dependence on ε. In this
example, our system is still

∂zV+ = Gε
+(γ + iτ, η)V+ + F+,

∂zV− = Gε
−(γ + iτ, η)V− + F−,

Γ(V+ + V−)|z=0 = g

(4.16) eqn:ch2ex3

What happens as ε → 0? If there is an eigenvalue µε of Gε such that |µε| → 0 as
ε→ 0, then (4.16) becomes{

∂zv
b,ε
− = µεvb,ε

− + (. . .)

∂zv
g,ε
− = Gεvg,ε

− + (. . .),

hence we cannot use this component to match the boundary condition and so we
must have a boundary layer here. The size of the boundary layer will be

µε ∼ −C
εα

as ε→ 0 with α > 0.

A good boundary layer scaling is vb,ε
−

( z
εα

)
.

We study now the solutions of D(γ+iτ, iη, µ) = 0 with Reµε < 0 in order to find a general
recipe to get the sizes of boundary layers. If ∃ µεi such that |µεi | → ∞ as ε → 0 this will
give us the scaling of the boundary layer. Supposing that |µε| ∼ C/εα as ε→ 0, then the
boundary layer will be of size εα. [REFS - ??-Grenier and ??-T. Paul]

We study three further examples to find the sizes of boundary layers in the given
geophysical systems.

• Ekman Layer. Does our recipe give us back the correct scaling? ∂tu+
e× u
ε

+
∇p
ε

= ε∆u, z > 0

∇ · u = 0

We get

ε2Dε(γ + iτ, iη, µ) = ε2 det


γ + iτ + ε|η|2 − εµ2 −1

ε
0 iη1

ε
1
ε

(γ + . . .) 0 iη2
ε

0 0 (γ + . . .) −µ
ε

η1 η2 −iµ 0


= ε2(γ + iτ + ε|η|2 − εµ2)2(µ2 − |η|2) + µ2 = 0.

Do there exist eigenvalues µ→∞ as ε→ 0? Indeed we see that there are, given that
we have a sixth order polynomial whose leading terms are multiplied by the ε2 term.
The general procedure to solve this would be to look for solutions ν = 1/µ→ 0. We
describe with respect to ε the behaviour close to 0 of the roots of the polynomial.
In general this will require a Newton polygon to solve, which allows one to describe
all the branches that occur. Look for a change of variables ν = tεα, where α ∈ Q.
Write the coeffecients of the double polynomial in ν, α. Suppose you may write a
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term in your polynomial in the form aijν
iεj, with aij 6= 0, A general recipe is to find

the convex envelope of the set of points in ij-space; α is then given by the slope of
the polygon’s edges (thus we many find as many α as there are edges). However, it
is often much quicker to solve this directly.

If we look for µε = C/εα then at leading order, the balance is

ε2ε2C6/ε6α + C2/ε2α = 0

so that α = 1, which is exactly the Ekman layer.

• Munk layer. In this example, we will consider a model of wind-driven ocean
circulation. The 2D equations,

∂tω + u · ∇ω + r
2
ω + βu2 − ν∆ω − βcurlψ = 0,

ω = ∂xu2 − ∂yu1,

∇ · u = 0,

(4.17) eq:munklayer

can be obtained from the 3D rotating incompressible Navier-Stokes equations with
forcing, a free surface, and a geometry effect (in this case, this is the term βcurlψ,
which describes a wind forcing). We also have an Ekman pumping term, r

2
ω, and

again a representation of the Coriolis force, βu2. [ref: Desjardins+Grenier for deriva-
tion, with rigid boundary approximation]

The domain in this example will be χW (y) ≤ x ≤ χE(y) [diagram to add]. We scale
β = 1/ε with ν, r fixed.

The linear part of this equation is

∂tw +
r

2
w +

1

ε
u2 − ν∆w = 0. (4.18)

To find Dε(γ + iτ, iη, µ), we look for solutions of the form e(γ+iτ)teµxeiηy with
Reµ < 0, x > 0. We obtain

(γ + iτ) +
r

2
+

1

ε

µ

µ2 − η2
− ν(µ2 − η2) = 0 (4.19)

since ∂kw = ∆u2 [details in recording]. Multiplying through:

ε(γ + iτ)(µ2 − η2) +
r

2
ε(µ2 − η2) + µ− νε(µ2 − |η|2)2 = 0. (4.20)

Try a solution to this equation of the form µε = c/εα. The leading balance of the
equation is then

c/εα − εc4/ε4α = 0 =⇒ α = 1/3, c3 = 1, (4.21)

giving us a boundary layer of size ε1/3. If we looked for x < 0, we could obtain the
Stommel layer.

• Spherical boundary layers. For this example, the linear equation is ∂tu+ 1
ε

sin θ
0

cos θ

+ 1
ε
∇p = ε∆u,

∇ · u = 0.

(4.22) eq:spher_BL
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We look for solutions of the form e(γ+iτ)te−µxeiη1yeiη2z satisfying |µε| → ∞, |ηε2| → ∞
with ηε2 = |µε|1/2, to take into account the geometrical constraint of the sphere.
We get, with η = (η1, η2),

Dε(γ + iτ, iη, µ) = ε2(|η|2 − µ2)(γ + iτ + ε(|η|2 − µ2))2

− (sin θ)2µ2 + (cos θ)2η2
2 + 2iµη2 cos θ sin θ = 0. (4.23)

The balance of the leading terms will depend on whether or not our domain is close
to the equator.

– Fixing θ 6= 0 with η2 = µ1/2, we find leading terms −ε4µ6 = (sin θ)2µ2 which

gives a boundary layer of size
(

ε

|sin(θ)|

)1/2

.

– For θ = εγ → 0 as ε→ 0, a change in the leading terms occurs when γ = 2/5.
– At the equator, when θ = 0, we have leading orders −ε4µ6 + µ = 0. For
µ = c/εα, this gives α = 4/5.

Rigorous studies for these kinds of layers are still few and far between. Even for the linear
systems, the boundaries layers can be very degenerate, so even for these seemingly simple
linear PDEs, it is not always clear that they are well-posed. The justification, once the
boundaries layers are well-posed, of the expansion with the boundary layer of size larger
than ε is also unclear.

4.3 Waves

The aim of this lecture is to study waves in the rotating fluid system. Different from
the two previous lectures though, here we will omit boundary layers by considering the
periodic domain T3. The rotating fluid equations that we consider are

∂tu
ε + (uε · ∇)uε +

1

ε
e× uε +

1

ε
∇pε = 0

∇ · uε = 0
uε|t=0 = u0.

(4.24) eq:rf

Additionally the viscous terms are not included as they are not important for the present
analysis. The framework we will use to study the equations is fairly general, so the
incompressible limit of non-rotating equations will also be considered on the same domain.
These equations (after scaling analogously to the previous equations) will be{

∂tρ
ε +∇ · (ρεuε) = 0

∂tu
ε + (uε · ∇)uε +

1

ε2
∇ρε = 0.

Remark 22. Here we have considered the following barotropic pressure law.

p(ρ) =
1

2
ρ2.

The ε which appears is the Mach number, defined as the ratio of velocity scale to the speed
of sound. These equations describe acoustic waves, and also share some similarity with
the nondimensional shallow water equations; in 2 dimensions they are equivalent upon
replacing ρε with hε.
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We consider a perturbation of the homogeneous density profile

ρε = 1 + εRε,

such that the equations on Rε writes

∂tR
ε + (uε · ∇)Rε +

1

ε
∇ · uε +Rε∇ · uε = 0

∂tu
ε + (uε · ∇)uε +

1

ε
∇Rε = 0

uε|t=0 = u0

Rε|t=0 = R0,

(4.25) eq:ceeps

where uε is not asked to satisfy the divergence free condition. If uε and Rε converge, we
expect their limits to be in the kernel of the singular in ε parts of the equation. In the
present case, it would mean that

∇ · u0 = 0, ∇R0 = 0,

i.e. the limit or uε should satisfy the incompressibility condition and the perturbation Rε

should converge toward a constant.
There are 2 different ways to approach these sets of equations, so we will use different

techniques for each. Firstly though, since we are ignoring viscous effects, the equations
are able to exhibit a singularity in finite time, and so we need to first ensure that the
solution is smooth enough for an interval of time that doesn’t depend on ε.

4.3.1 Uniform existence results

Let us consider a general class of system including linear and nonlinear parts, using the
formal notation L(D) to denote a Fourier multiplier associated to L(iξ), i.e. a linear
operator such that

L̂(D)f(ξ) = L(iξ)f̂(ξ).

For instance, 2πiξj is the Fourier multiplier for D = ∂xj . The linear part considered is
singular such that the general equation is written

A0(εV )∂tV +
1

ε
L(D)V + A(V , D)V = 0, (4.26) eqn:generalSystem

with everything depending smoothly on V . We also assume the following:

• A0(U) is symmetric positive definite for any U and there exist constants 0 < c0 < K
such that

∀U ∈ B(0, 1), c0IN ≤ A0(U) ≤ KIN ;

• L is skew-symmetric and of order p, meaning that the operator L(D) will consume
p derivatives, with estimate

‖L(D)V ‖Hs ≤ C‖V ‖Hs+p , ∀s;
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• The latter operator is of the form

A(V , D) =
d∑
j=1

Bj(D)Aj(V )Bj(D)∂jV ,

with Aj(V ) symmetric matrices and Bj zero order symmetric, which will take no
additional derivatives when composed with a differential operator.

Remark 23. One important consequence of these assumptions is that the derivatives
commute with L(D) and Bj.

Now let us introduce the Leray decomposition of a vector field. A given u can be
decomposed into the sum of an irrotational vector field, which can be written in a unique
way as the gradient of a scalar field ψ, and a divergence free vector field v,

u = ∇ψ + v.

This is similar to the Helmholtz decomposition which may be more familiar in the applied
literature,

u = ∇ψ +∇×A,

but is slightly different in that v is unique, whereas A is not. With this introduced,
the Leray projector is defined as the projection of a vector field onto its divergence free
component.

P : u 7→ v.

If we apply this operator to the rotating fluid equation (4.24) we obtain

∂tu
ε +

1

ε
P (e× P(uε)) + P ((uε · ∇)P(uε)) = 0,

where we have used the fact that ∇ · uε = 0 to add P where convenient to make the
equation look more symmetric. This equation is now of the form (4.26) with

• L = P (e× P(·)) skew-symmetric;

• A0 = I3;

• A(u, D)u =
∑d

j=1 P(uj∂j)(Pu), that is to say Bj = P and Aj(u) = ujI3.

thm:gwp Theorem 4.3.1. Let s > 1 + d/2. For any V0 ∈ Hs(Td) there exists T > 0 and ε0 > 0
such that for any ε ∈ (0, ε0) there exists a unique V ε ∈ C(0, T ;Hs) solution of (4.26)
such that V ε|t=0 = V0.

Reference : [Kleinerman-Majda-Shochet]

Proof. We admit here that for any ε > 0 there exits Tε > 0 and a unique solution
V ε ∈ C(0, Tε;H

s). The proof is an energy estimate, and while we can look at general s
we assume for simplicity that s is an integer. We get, for any multi-index α such that
|α| ≤ s,

A0(εV )∂t∂
αV +

1

ε
L(D)∂αV + A(V , D)∂αV = −C
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with the commutator term defined as

C = [∂α, A0(εV )]∂tV︸ ︷︷ ︸
C1

+ [∂α, A(V , D)]V︸ ︷︷ ︸
C2

.

In order to bound C1, let us compute the following derivative, for any α = β + ej,

∂α(A0(εV )∂tV ) = ∂β
(
DA0(εV ) · ∂xjV ε∂tV + A0(εV )∂t∂xjV

)
. (4.27) eq:dalpha

With this expression and the tame estimates, see for instance [?], one finds

‖C1‖L2 ≤ εΛ (‖V ‖Hs) ‖∂tV ‖Hs−1 (4.28)

with Λ a continuous increasing function, depending on the operators of the problem. Then
using the equation, one finds

‖ε∂tV ‖Hs−1 ≤ ‖LV ‖Hs−1 + ε‖A(V , D)‖Hs−1

≤ C‖V ‖Hs + Λ (‖V ‖Hs) ‖V ‖Hs ,

that we can rewrite
‖ε∂tV ‖Hs−1 ≤ Λ(‖V ‖Hs)‖V ‖Hs . (4.29) eq:ept

Remark 24. If A0 6= IN , we assume p ≤ 1.

Also applying directly the same inequality to the second commutator term provides

‖C2‖L2 ≤ Λ (‖V ‖Hs) ‖V ‖Hs .

From (4.27) we get∫
A0(εV )∂t∂

αV · ∂αV +
1

ε

∫
L(D)∂αV · ∂αV +

∫
A(V , D)∂αV · ∂αV = −

∫
C · ∂αV .

The integral on L(D) is equal to zero since L is skew-symmetric. Besides, we observe that

d

dt

∫
A0(εV )∂αV · ∂αV =

∫
A0(εV )∂t∂

αV · ∂αV + ε

∫
DA0(εV )∂tV ∂

αV · ∂αV︸ ︷︷ ︸
Cε

.

Let us bound this latter integral,

|Cε| ≤ ‖DA0(εV )ε∂tV ‖L∞‖∂αV ‖2
L2 ,

where we have uniformly bounded ε since it is meant to be very small. Use that s−1 > d/2,
the smoothness of A0 and the compactness of the spatial domain to obtain

|Cε| ≤ Λ (‖V ‖Hs) ‖ε∂tV ‖Hs−1‖V ‖2
Hs .

Now, using estimate (4.29) we can merge different non-decreasing maps Λ and obtain

|Cε| ≤ Λ (‖V ‖Hs) ‖V ‖2
Hs .
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It remains to expand A(V , D) and to estimate the following integrals∫
Bj(D)Aj(V )Bj(D)∂j∂

αV · ∂αV = −
∫
Bj(D)DAj(V )∂jV B

j(D)∂αV · ∂αV

≤ Λ (‖V ‖Hs) ‖V ‖2
Hs .

In summary,
d

dt

1

2

∫
A0(εV )∂αV ∂α ≤ Λ (‖V ‖Hs) ‖V ‖2

Hs .

Integrate with respect to time and sum up for |α| ≤ s yields

∑
|α|≤s

∫
A0(εV )∂αV · ∂αV

 (t) ≤

∑
|α|≤s

∫
A0(εV )∂αV · ∂αV

 (0)

+

∫ t

0

Λ (‖V ‖Hs) ‖V (τ)‖2
Hs dτ.

Thanks to the former assumption on A0, we can deduce

c0‖V (t)‖2
Hs ≤ K‖V0‖2

Hs +

∫ t

0

Λ (‖V ‖Hs) ‖V (τ)‖2
Hs dτ.

Now we can infer that there exists some time of existence uniform with respect to ε. Let
us consider R > 0 such that

2K

c0

‖V0‖Hs ≤ R.

From the local existence result we can define

T ∗ε := sup{T : sup
[0,T ]

‖V ‖2
Hs ≤ R}

so that either T ∗ε = +∞ or T ∗ε < +∞ and sup[0,T ∗ε ) ‖V ‖2
Hs = R. Hence any T > 0

satisfying
K

c0

‖V0‖2
Hs + TΛ(R1/2)R ≤ 3

2

K

c0

‖V0‖2
Hs

also satisfy T < T ∗ε , providing the result.

The next step is to describe V ε when ε goes to 0. There are at least two ways to do
it:

• Using the energy estimate and some weak convergence argument;

• Using the filtering method (introduced by Schochet and Grenier), requiring to study
the continuous semigroup etL/ε.
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4.3.2 Incompressible limit

As in our first example, let us recall the compressible Euler equations,
∂tR

ε + (uε · ∇)Rε +
1

ε
∇ · uε +Rε∇ · uε = 0

∂tu
ε + (uε · ∇)uε +

1

ε
∇Rε = 0,

(4.30) eqn:incompEuler

which also writes, while dropping the ε superscript for sake of simplification,
∂tR + (u · ∇)R +

1

ε
∇ · u+R∇ · u = 0

(1 + εR)∂tu+ (1 + εR)(u · ∇)u+
1

ε
∇R +R∇R = 0,

where momentum equation has been multiplied by 1 + εR for convenience. Note that this
system is also of the form (4.26) with

V =

(
R
u

)
, A0(εV ) =

(
1 0
0 (1 + εR)Id

)
, L(D) =

(
0 ∇·
∇ 0

)
Bj = Id, A(V , ξ) =

∑d
j=1 ξjAj(V ) =

(
u · ξ RξT

Rξ (1 + εR)u · ξId

)
,

satisfying indeed L∗ = −L and A(V , ξ) symmetric for any ξ ∈ Rd. Now we can state the
convergence result.

Theorem 4.3.2. Let V0 ∈ Hs for s > 1 + d/2 and T > 0 given by the previous result.
Then uε converges weakly in L2([0, T ]×T3) to u the solution of the incompressible Euler
equation 

∂tu+ (u · ∇)u+∇p = 0
∇ · u = 0
u|t=0 = P(u0).

Proof. In what follows, the technique comes from Lions and Masmoudi for the Navier-
Stokes equation, see for instance [?].

From the general Hs estimates obtained in the proof of Theorem 4.3.1 we obtain that
for any T > 0 the Hs norm of uε is uniformly bounded with respect to ε. In particular
uε converges weakly in Hs−1 toward some u, up to an extraction. By multiplying the
first equation of (??) and letting ε go to 0 we obtain that u is divergence-free. Besides
vε := P(uε) inherits from the same boundedness of uε. Moreover, applying the Leray
projector on equation (??) provides

∂tv
ε + P ((uε · ∇)uε) = 0

∇ · vε = 0
vε|t=0 = P(u0),

(4.31) eq:pie

since the term R∇R also writes ∇R2/2. We infer that

sup
[0,T ]

‖∂tvε‖Hs−1 ≤ ‖P ((uε · ∇)uε)‖Hs−1

≤ ‖uε‖Hs−1‖uε‖Hs ,
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so that Ascoli theorem applies and provide the strong convergence of vε toward some v in
C([0, T ];Hσ(T3)) for any σ < s. Since P(u) = u, the continuity of P and the uniqueness
of the limit provide v = u. From the weak (resp. strong) convergence of uε (resp. vε)
and the Leray decomposition

uε = ∇ψε + vε

we obtain that both ∇ψε and ∇2ψε converge weakly toward 0 in L2([0, T ] × T3). The
strong-strong and weak-strong convergences allow to pass to the limit in

P((uε · ∇)uε) = P (((∇ψε + vε) · ∇) (∇ψε + vε))

except for the following term, which actually vanishes,

P ((∇ψε · ∇)∇ψε) =
1

2
P
(
∇ |∇ψε|2

)
= 0.

Therefore, we obtain as ε goes to zero that the limit u satisfies
∂tu+ P ((u · ∇)u) = 0

∇ · u = 0
u|t=0 = P(u0),

from which one can always recover the pressure.

4.3.3 Rotating fluids

We use a different strategy called the filtering method in order to deal with the rotating
fluids equation

∂tu
ε +

1

ε
Luε + P ((uε · ∇)uε) = 0

where Luε = P(e × uε). The filtering method consists in writing uε = e−tL/εvε. Upon
substitution into the previous equation, we find that vε satisfy

∂tv
ε + etL/εP

(((
e−tL/εvε

)
· ∇
)
e−tL/εvε

)
= 0.

Notice that it is equivalent to have uε or vε bounded in C([0, T ];Hs(T3)). Hence here
∂tv

ε is bounded in C([0, T ];Hs−1(T3)) so that by Ascoli theorem there exists v such that

vε −→
ε→0

v in C([0, T ];Hσ(T3)), ∀σ < s.

Therefore we can write uε = e−tL/εv+ rε with rε = e−tL/ε(vε−v) converging strongly to
0. Let us now decompose

v = v + vos

with v ∈ KerL and vos ∈ (KerL)⊥, where the kernel describes as

{y 7→ u(y) : uz = 0,∇ · u = 0}.

. In this decomposition vos represents the oscillatory part coming from waves. So following
this we have

uε = e−tL/εv + e−tL/εvos + rε

= v + e−tL/εvos + rε,
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with both the second and the third terms converging to 0. Hence uε converges weakly to
v.

Denote the bilinear part of the latter equation as

Qε(v,v) := etL/εP
(((

e−tL/εvε
)
· ∇
)
e−tL/εvε

)
which should converge weakly to some Q(v,v),

Qε(v,v) ⇀ Q(v,v).

Using this the limit equation is given by

∂tv +Q(v,v) = 0,

the projection of which onto KerL is given by

∂tv + ΠQ(v + vos,v + vos) = 0.

Here Π is our notation for projection onto the kernel of L. When we expand this bilinear
term we first get ΠQ(v,v), the bilinear term in 2D Euler, followed by terms which involve
the oscillatory part vos. It isn’t clear that applying Π to these additional terms will give
an equation which is decoupled from the oscillatory part. So the next question is to find
out whether these other terms are 0 or not, and this will tell us if there is an interaction
between the waves and the mean flow.

Now we start to give a more detailed expression for this bilinear operator using the
spectral decomposition of L. As we are working on T3 we can compute this spectrum
using Fourier series. In particular we need to know how the operator acts on u(k)eik·x.
We can write this as

û(k) =
k

|k|

(
û · k
|k|

)
eik·x +

(
û− k

(
û · k
|k|

))
eik·x,

where we see that in Fourier space,

P̂(u)(k) =

(
I − k

|k|
⊗ k

|k|

)
û(k)eik·x

∴ L̂u(k) = ̂P(e× u)(k) =

(
I − k

|k|
⊗ k

|k|

)
e× û(k)eik·x

=

(
I − k

|k|
⊗ k

|k|

)0 −1 0
1 0 0
0 0 0


︸ ︷︷ ︸

A

û(k)eik·x.

This matrix A has eigenvalues {0,±ik3/|k|}. The two nonzero eigenvalues correspond to
Poincaré waves. Also associated with each of the eigenvalues is an eigenvector which we
will writeRα

k, where α ∈ {0,+,−} tell us which of the eigenvalues this vector is associated
with. Now denoting λαk ∈ {0,±k3/|k|} we can write for a vector f

êtL/εf(k) =
∑

α∈{+,−,0}

eitλ
α
k/ε(f̂(k) ·Rα

k)Rα
k
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Then we can substitute this into the expression for Qε(v,v),

Q̂ε(v,v)(k) =
∑
α

eitλ
α
k/ε( ˜̂Qε(v,v)(k) ·Rα

k)Rα
k,

where Q̃ε(v,v) is given by

˜̂Qε(v,v)(k) =
∑
l+m=k

(ê−tL/εv(l) · im)ê−tL/εv(m)

=
∑
l+m=k
β,γ

e−itλ
β
l /ε(v̂(l) ·Rβ

l )(Rβ
l · im)e−itλ

γ
m/ε(v̂(m) ·Rγ

m)Rγ
m.

Therefore

Q̂ε(v,v)(k) =
∑
l+m=k
α,β,γ

eit(λ
α
k−λ

β
l −λ

γ
m)/ε(v̂(l) ·Rβ

l )(Rβ
l · im)(v̂(m) ·Rγ

m)(Rγ
m ·Rα

k)Rα
k

=
∑
l+m=k
α,β,γ

eit(λ
α
k−λ

β
l −λ

γ
m)/εQk,l,m

α,β,γ
(v̂(l), v̂(m)).

These terms always converge weakly to 0 except for the resonant terms, when k = l+m
and λαk = λβl + λγm, so the limit of Qε(v,v) can be expressed as

Q(v,v) =
∑

resonant set

Qk,l,m
α,β,γ

(v̂(l), v̂(m)).

The above proves,

Theorem 4.3.3. uε = e−tL/εvε where vε → v and v solves

∂tv +Q(v,v) = 0.

To get a better understanding of Q we have the following lemma.

Lemma 4.3.1 (Babin-Mahalov-Nicolaenko).

ΠQ(v,v) = P(v · ∇v),

therefore v solves the 2D incompressible Euler equations, with

v|t=0 = Πv0 =

∫
z

v0(y1, y2, z) dz.

Proof. The resonant set is the set of wavenumbers k, l,m such that k = l +m and

±k3

|k|
=
±l3
|l|

=
±m3

|m|
,

with k3 = 0, as this is given by the initial condition being an integral in the vertical
direction. In particular this means that l3 +m3 = 0 and

±l3
|l|

+
±m3

|m|
= 0 or

±l3
|l|
− ±m3

|m|
= 0.
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The second of these implies that |l| = −|m| so l = m = 0. For the first we have |l| = |m|.
It is better now to use a slightly different decomposition of L. To study the oscillatory

part of L we can write

ê−tL/εv(k) = ckv̂(k)− sk
|k|
k × v̂(k), with ck = cos

(
k3

|k|
t

ε

)
sk = sin

(
k3

|k|
t

ε

)
.

Then we have that,

̂e−tL/ε × curl(e−tL/εv) =
∑
l+m=k
l3+m3=0
|l|=|m|

(
clv̂(l)− sl

|l|
l× v̂(l)

)
×m

×
(
cmv̂(m)− sm

|m|
m× v̂(m)

)
+ other terms.

The other terms here are those that come from when l3 + m3 6= 0 and when |l| 6= |m|,
which don’t concern us here. We will ignore these additional terms now. In this sum each
of the summands can be rewritten using the vector triple product as,(

clv̂(l)− sl
|l|
l× v̂(l)

)
× (cmm× v̂(m) + sm|m|v̂(m)).

Then we have a lot of cancellation giving,

̂e−tL/ε × curl(e−tL/εv) =
∑

clcmv̂(l)×m× v̂(m)− slsm
|m|
|l|
l× v̂(l)× v̂(m)

=
∑

c2
l v̂(l)× (m× v̂(m)) + s2

l (l× v̂(l))× v̂(m)

=
∑

c2
l v̂(l)× (m× v̂(m)) + s2

l (m× v̂(m))× v̂(l),

where the last line comes from just swapping l and m in the summation as the sum is
symmetric in these terms. Finally this gives,∑

(c2
l − s2

l )(v̂(l)× (m× v̂(m)).

Since c2
l − s2

l = cos
(

2l3
|l|

t
ε

)
which is oscillating, this completes the proof that ΠQ(u,u) =

Q(Πu,Πu).

We won’t go further with these considerations other than noting a few further results.
Define Πos = I − Π, then we can consider the equation for the oscillating flow,

∂tv
os + Πos(Q(v,vos) +Q(vos,v) +Q(vos,vos)) = 0,

and ask whether this equation is truly nonlinear, i.e. if the last term on the left is nonzero.
Specifically this being nonzero would present problems such as lack of global existence.
In fact, the outcome depends on the geometric situation being considered. It is true that
ΠosQ(vos,vos) is not always zero. We could study more generally Ω = T2 × a3T, where
we have adjusted the length of the torus in one direction, then the value a3 with affect
the behaviour of the solution. In particular some a3 with give resonance to the solution,
meaning that this term is nonzero, while others won’t. We have the following result.
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Lemma 4.3.2 (Babin-Mahalov-Nicolaenko). For almost every a3, ΠosQ(vos,vos) = 0,
i.e. the system is not resonant.

Another domain that could be considered is when the horizontal domain is unbounded,
Ω = R2 × T. One thing that we might be interested in studying in the convergence of uε
to u in this domain. As before, what is always true is that,

uε = Πv + etL/ε(I − Π)v + rε,

where v is some limit function and rε converges strongly to 0 as ε → 0. In the previous
case the other terms were converging weakly to 0. In the rotating fluid equations we have
dispersive waves with the dispersion relation

ω =
k3

(|ξ|2 + k2
3)1/2

=
k3 6=0
± 1(

1 + |ξ|2
k23

)1/2
,

where we have made a distinction between the horizontal and vertical wavenumbers. In
particular now we can have

ω(ξ) =
1

(1 + |ξ|)1/2
,

which has the hessian
D2ω = − 2|ξ|2

(1 + |ξ|2)5
6= 0.

This is bounded below for ξ bounded above, | detD2ω| ≥ c0 uniformly for |ξ| ≤ R.
The presence of this dispersion, meaning that waves with different wavenumbers travel
at different speeds creates energy decay in the system. In this case we have Strichartz’s
estimates which give strong convergence to 0 of the aforementioned term,

etL/ε(I − Π)v →
ε→0

0.

For the incompressible, this observation was due to [Ukai], and for rotating fluids is was
due to [Chemin-Desjardins-Gallagher-Grenier].

[more on literature here]
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4.4 Stability of the Ekman layer

The aim of this chapter is to describe the optimality of R0 < 1, one of the conditions noted
previously in the theorem of Grenier-Masmoudi. We start with the linearized (around the
approximate solution uapp) rotating fluid equations,

∂tu+ uapp · ∇u+ u · ∇uapp +
e× u
ε

+
∇p
ε

= ε∆u.

Recall that the approximate solution uapp to the original equations was expressed as,

uapp = uint(t,y) + ub,0
(
t,y,

z

ε

)
+ ub,1

(
t,y,

1− z
ε

)
+ ...

Here we make a simplification that the interior solution is given by a constant q (the
solution of the limit system) so uapp = q + V (q, z/ε). We only consider one of the
two boundary layers so this means we can study the vertical domain z > 0, instead of
z ∈ [0, 1], and y ∈ T2 or R2. This simplification gives the equations,

∂tu+
[
q + V

(
q,
z

ε

)]
· ∇yu+

1

ε
u3∂ZV

(
q,
z

ε

)
+
e× u
ε

+
∇p
ε

= ε∆u.

If we now perform the change of scale, u(t,y, z) = v(τ = t/ε,Y = y/ε, Z = z/ε) then
we obtain an equation for v, for Z > 0 and Y ∈ R2,

∂τv + [q + V (q, Z)] · ∇Y v + v3∂ZV (q, Z) + e× v +∇XP = ∆Xv,

which is coupled with the continuity equation, ∇X · v = 0. In the above P = p/ε is the
scaled pressure. This new rescaled problem can be written as,

∂τv = Lv, Lv = P[∆Xv − V · ∇Y v − v3∂ZV − e× v],

where P is the Leray projector. If there is an unstable eigenvalue λ for L, or in other
words we can find v(τ) = eλτW with Reλ > 0, then we will have that ‖v(τ)‖L2 ∼ eReλτ .

Once we then go back to the original scaling we have that ‖u(t)‖L2 ∼ ε3/2eReλt/ε,
which is large for t� ε. In fact we can find Tε → 0 (e.g. Tε =

√
ε) such that,

sup
[0,Tε]

‖u(t)‖L2 →∞.

In this case we don’t expect that uε ∼ uapp. It is here that the condition on R0 is
important, as this being less than 1 is a condition for the spectrum of the linear operator
L being stable. As in the statement of the theorem of Grenier-Masmoudi, R0 in the case
of this simplification is written as,

R0 =

∫ ∞
0

Z|∂ZV (q, Z)| dZ =: F (q),

so the stability of the system will be dependent on the parameter |q|, which will take a
similar place to the Reynolds number here. One can study this numerically, to increase
the size of q and investigate when instabilities start to appear in the system. This was
done [Lilly (?)], and it was demonstrated that instabilities appear when |q| ∼ 55, which
is significantly larger than that which is obtained from energy estimates, |q| ∼ 5. In the
range 5 < |q| < 55 we can observe behaviour where the norm ‖v‖L2 initially grows in
time before an eventual decay to 0 over longer times. There is still no linear instability
but the decay in energy is not monotone.

[more stuff]
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4.4.1 Nonlinear instability

Here we will study the spectrum of the operator L, taking a partial Fourier transform in
space owing to the finite vertical domain. The spectrum of interest is the union

σ(L) =
⋃
ξ

σ(Lξ), Lξ = P(ξ)[∆ξv − iξ · V v − v3∂ZV − e× v],

where ∆ξ = ∂2
Z − |ξ|2. The Lξ are the partial Fourier transforms of L. Aside, this kind

of wave solution/transform is also known as a normal modes solution. Here this Leray
projector P(ξ) operating on a field u gives its nondivergent part v with respect to the
operator ∇ξ.

u = ∇ξw + v, with ∇ξ · v = 0, ∇ξ =

(
iξ
∂Z

)
.

Proposition 4.4.1. For λ ∈ σ(Lξ) we have that,

(i) For |ξ| sufficiently large, λ− Lξ is invertible for Reλ ≥ 0,

(ii) For |ξ| sufficiently small, λ− Lξ is invertible for Reλ ≥ 0 if ξ 6= 0,

(iii) (λ− Lξ) is invertible for |Imλ| sufficiently large.

Remark 25. We only need to study σ(Lξ) for 0 < r ≤ |ξ| ≤ R.

Proof. (i) For looking at the energy estimate we reintroduce the pressure P and look
at the full equations,

λv + iξ · (q + V )yv + v3∂ZV + e× v +∇ξP = ∂ZZv − |ξ|2v + F ,

∂Zv3 + iξ · vy = 0,

v|Z=0 = 0

where F is a forcing term and λ = γ + iτ . This is a Fourier transform in the
horizontal direction and a Laplace transform in time. Following this the variables
v are complex so to find the energy estimate we multiply by v̄ before before taking
the real part and integrating. The subsequent equation is then,

γ ‖v‖2
L2 + Re

∫
v3∂ZV · v̄ dZ + ‖∂Zv‖2

L2 + |ξ|2 ‖v‖2
L2 ≤ ‖F ‖L2 ‖v‖L2 , (4.32) eqn:energy4

where we have used Cauchy-Schwarz. The L2 norm here is in the Z variable as this
is the only variable remaining. The integral term can be bounded by noting that the
derivative ∂ZV is bounded in L∞ by a constant, and using Cauchy-Schwarz again.
So this gives

(γ + |ξ|2) ‖v‖2
L2 + ‖∂Zv‖2

L2 ≤ C ‖v‖2
L2 + ‖F ‖2

L2 .

If γ + |ξ|2 > C then we can invert. [...]

(ii) Here we again use equation (4.32) but instead deal with the integral term in a
slightly different way. We write

v3 =

∫ Z

0

∂Zv3 dZ = −iξ ·
∫ Z

0

vy dZ ′

= −iξ ·
∫ Z

0

∫ Z′

0

∂Zvy dZ ′′ dZ ′
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where we have written a function as an intergal over Z of it’s Z-derivative twice.
Then using Cauchy-Schwarz the inner integral gives∣∣∣∣∣

∫ Z′

0

∂Zvy dZ ′′

∣∣∣∣∣ ≤ Z ′1/2 ‖∂Zvy‖L2 ,

so
|v3| ≤ |ξ|Z3/2 ‖∂Zvy‖L2 .

Similarly we have
|vy| ≤ |Z|1/2 ‖∂Zvy‖L2 ,

so putting this all together gives the following bound for the integral term in (4.32),∣∣∣∣Re

∫
v3∂ZV · v̄ dZ

∣∣∣∣ ≤ |ξ|(∫ Z2|∂ZV | dZ
)
‖∂Zv‖2

L2

≤ C|ξ| ‖∂Zv‖2
L2 .

The integral above can be made less than a constant C because the boundary layer
is exponentially decaying, so the second moment is finite. Now if |ξ| is small enough
then it can be absorbed in the energy dissipation term. So if 1 − C|ξ| > 0 we can
invert. If ξ 6= 0 we can invert as long as γ + |ξ|2 > 0, so if ξ 6= 0, even if γ = 0 we
can still invert.

(iii) So far we have only used information from the real part of the equation, but for this
part we will look at the imaginary part after multiplying by v̄ and take the absolute
value. The equation we obtain is

|τ | ‖v‖2
L2 ≤ C|ξ| ‖v‖2

L2 + C ‖v‖2
L2 + ‖F ‖L2 ‖v‖L2

Now we combine with the inequality from the first part of the proof. For a positive
constant A we have[

A(γ + |ξ|2) + |τ |
]
‖v‖2

L2 + A ‖∂Zv‖2
L2 ≤(A+ 1) ‖F ‖L2 ‖v‖L2

+ (A+ 1)C ‖v‖2
L2 + C|ξ|2 ‖v‖2

L2 ,

which after moving things around says that λ− Lξ is invertible if[
A(γ + |ξ|2) + |τ |

]
− (A+ 1)C − C|ξ|2 > 0.

This is true for |τ | sufficiently large.

[...]

Proposition 4.4.2. For γ > 0, ξ 6= 0, the spectrum of Lξ is made of eigenvalues which
are the zeros of an analytic function D(λ, ξ). Moreover, if D does not vanish on a compact
set we get a resolvant estimate.
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Proof. Here we will provide only a sketch of the ODE proof. We want to study Lξv =
λv + F . Denoting

W =


v1

v2

v3

p
∂Zv1

∂Zv2

 ,

the equivalent system of equations (with Dirichlet boundary conditions) is{
∂ZW = G(λ, ξ, Z)W + F

ΓW (0) = 0,
(4.33) eq:lecture4propn2

where G is a matrix. We note 2 properties that the matrix G has.

1. |G(λ, ξ, z)−G∞(λ, ξ)| ≤ Ce−Z/
√

2 ∀Z > 0.

2. G∞(λ, ξ) has no eigenvalues on the imaginary axis for Reλ ≥ 0 and ξ 6= 0. There
are three of positive real part and three of negative real part.

The first of these uses the fact that as we take Z → ∞ the matrix G converges to a
constant matrix G∞(λ, ξ). These two facts above together tell us that (4.33) has an
exponential dichotomy. That is to say we can find projections Π+(λ, ξ, Z),Π−(λ, ξ, Z)
which are of rank 3, such that they commute with the resolvent of the system. I.e.

T (λ, ξ, Z, Z ′)Π±(λ, ξ, Z ′) = Π±T (λ, ξ, Z, Z ′),

where T here is such that if we apply the operator to a vector, we will get the solution to
the homogeneous ODE with Cauchy data taken at Z ′. Now we can solve the ODE (4.33)
in the same way as was done in section 4.2 where there was a separation of the spectrum.
We have

W+ = −
∫∞
Z
T (Z, y)Π+(y)F(y) dy

W− = T (Z, 0)Π−(0)W (0) +
∫∞

0
T (Z, y)Π−(y)F(y) dy.

For F = 0, there is a non-trivial bounded solution if and only if Γ|Im Π−(λ,ξ,0) is not
injective. Then D(λ, ξ) = det

(
Γ|Im Π−(λ,ξ,0)

)
. [...]

Now we state 2 further results regarding nonlinear instability. The first says that we
can find initial data as close as we want to our basic stationary solution such that we will
deviate from it a given distance.

theorem:D-G Theorem 4.4.1 (Desjardins-Grenier). If

σ0 = sup {Reλ(ξ) s.t. λ(ξ) is an eigenvalue of L(ξ) with Reλ ≥ 0, ξ 6= 0} > 0,

(so we have a nonlinear instability somewhere) with σ0 = Reλ(ξ0) and D2Reλ(ξ)|ξ=ξ0
not degenerate (where D2 is the Hessian), then there exists initial data vε0 and C > 0
independent of ε such that ‖vε0 − V (q, Z)‖Hs ≤ εN , and the solution of

∂tv + v · ∇v + e× v +∇p = ∆v Z > 0
v|Z=0 = 0
v|t=0 = vε0

(4.34)

satisfies sup[0,T ε] ‖vε − V (q)‖L2 ≥ C where T ε ∼ | log ε|. We could equivalently take the
L∞ norm here. ε is small and both N and s are as large as we want.
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Also, we state the result in the original coordinates (i.e. using z/ε etc.).

Theorem 4.4.2 (Desjardins-Grenier in original coordinates). Making the same assump-
tion as in Theorem 4.4.1, there exists initial data uε0 and C > 0 such that
‖uε0 − V (q, z/ε)‖Hs ≤ εN and sup[0,θε] ‖uε(θε)− V ‖L∞ ≥ C, where θε ∼ ε| log ε| → 0 as
ε→ 0. Furthermore, uε solves{

∂tu
ε + uε · ∇uε + 1

ε
e× uε + 1

ε
∇p = ε∆uε

∇ · uε = 0
(4.35)

If we use the L2 norm then the lower bound is Cε3/2. This additional power of ε comes
from the rescaling.

Finally we state a positive result:

Theorem 4.4.3. Take uapp = u0,int + . . . and assume that

D(u0,int|t=0(y), λ, ξ) 6= 0 ∀λ s.t Reλ ≥ 0,∀ξ 6= 0, ∀y ∈ T2 or y ∈ R2. (4.36)

Then ∃T > 0 such that sup
[0,T ]

‖uε(t)− uapp(t)‖L∞ → 0 as ε→ 0.
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